000878255 001__ 878255 000878255 005__ 20210130005514.0 000878255 0247_ $$2doi$$a10.1021/acsami.0c05560 000878255 0247_ $$2ISSN$$a1944-8244 000878255 0247_ $$2ISSN$$a1944-8252 000878255 0247_ $$2Handle$$a2128/25839 000878255 0247_ $$2pmid$$apmid:32412230 000878255 0247_ $$2WOS$$aWOS:000541679900042 000878255 037__ $$aFZJ-2020-02724 000878255 041__ $$aEnglish 000878255 082__ $$a600 000878255 1001_ $$0P:(DE-HGF)0$$aHu, Tian-Yi$$b0 000878255 245__ $$aEnhanced Energy Storage Performance of Lead-Free Capacitors in an Ultrawide Temperature Range via Engineering Paraferroelectric and Relaxor Ferroelectric Multilayer Films 000878255 260__ $$aWashington, DC$$bSoc.$$c2020 000878255 3367_ $$2DRIVER$$aarticle 000878255 3367_ $$2DataCite$$aOutput Types/Journal article 000878255 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601993578_2081 000878255 3367_ $$2BibTeX$$aARTICLE 000878255 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000878255 3367_ $$00$$2EndNote$$aJournal Article 000878255 520__ $$aIndustry has been seeking a thin-film capacitor that can work at high temperature in a harsh environment, where cooling systems are not desired. Up to now, the working temperature of the thin-film capacitor is still limited up to 200 °C. Herein, we design a multilayer structure with layers of paraferroelectric (Ba0.3Sr0.7TiO3, BST) and relaxor ferroelectric (0.85BaTiO3–0.15Bi(Mg0.5Zr0.5)O3, BT–BMZ) to realize optimum properties with a flat platform of dielectric constant and high breakdown strength for excellent energy storage performance at high temperature. Through optimizing the multilayer structure, a highly stable relaxor ferroelectric state is obtained for the BST/BT–BMZ multilayer thin-film capacitor with a total thickness of 230 nm, a period number N = 8, and a layer thickness ratio of BST/BT–BMZ = 3/7. The optimized multilayer film shows significantly improved energy storage density (up to 30.64 J/cm3) and energy storage efficiency (over 70.93%) in an ultrawide temperature range from room temperature to 250 °C. Moreover, the multilayer system also exhibits excellent thermal stability in such an ultrawide temperature range with a change of 5.15 and 12.75% for the recoverable energy density and energy storage efficiency, respectively. Our results demonstrate that the designed thin-film capacitor is promising for the application in a harsh environment and open a way to tailor a thin-film capacitor toward higher working temperature with enhanced energy storage performance. 000878255 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0 000878255 588__ $$aDataset connected to CrossRef 000878255 7001_ $$00000-0002-7824-7930$$aMa, Chunrui$$b1$$eCorresponding author 000878255 7001_ $$0P:(DE-HGF)0$$aDai, Yanzhu$$b2 000878255 7001_ $$0P:(DE-HGF)0$$aFan, Qiaolan$$b3 000878255 7001_ $$0P:(DE-HGF)0$$aLiu, Ming$$b4 000878255 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b5 000878255 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.0c05560$$gVol. 12, no. 23, p. 25930 - 25937$$n23$$p25930 - 25937$$tACS applied materials & interfaces$$v12$$x1944-8252$$y2020 000878255 8564_ $$uhttps://juser.fz-juelich.de/record/878255/files/acsami.0c05560.pdf 000878255 8564_ $$uhttps://juser.fz-juelich.de/record/878255/files/HU_TianYi.pdf$$yPublished on 2020-05-15. Available in OpenAccess from 2021-05-15. 000878255 8564_ $$uhttps://juser.fz-juelich.de/record/878255/files/acsami.0c05560.pdf?subformat=pdfa$$xpdfa 000878255 909CO $$ooai:juser.fz-juelich.de:878255$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000878255 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b5$$kFZJ 000878255 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0 000878255 9141_ $$y2020 000878255 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05 000878255 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05 000878255 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-05 000878255 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000878255 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-05 000878255 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2018$$d2020-01-05 000878255 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05 000878255 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-05 000878255 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05 000878255 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2018$$d2020-01-05 000878255 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-05 000878255 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05 000878255 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05 000878255 920__ $$lyes 000878255 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0 000878255 980__ $$ajournal 000878255 980__ $$aVDB 000878255 980__ $$aUNRESTRICTED 000878255 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000878255 9801_ $$aFullTexts