001     878255
005     20210130005514.0
024 7 _ |a 10.1021/acsami.0c05560
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a 2128/25839
|2 Handle
024 7 _ |a pmid:32412230
|2 pmid
024 7 _ |a WOS:000541679900042
|2 WOS
037 _ _ |a FZJ-2020-02724
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Hu, Tian-Yi
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Enhanced Energy Storage Performance of Lead-Free Capacitors in an Ultrawide Temperature Range via Engineering Paraferroelectric and Relaxor Ferroelectric Multilayer Films
260 _ _ |a Washington, DC
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601993578_2081
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Industry has been seeking a thin-film capacitor that can work at high temperature in a harsh environment, where cooling systems are not desired. Up to now, the working temperature of the thin-film capacitor is still limited up to 200 °C. Herein, we design a multilayer structure with layers of paraferroelectric (Ba0.3Sr0.7TiO3, BST) and relaxor ferroelectric (0.85BaTiO3–0.15Bi(Mg0.5Zr0.5)O3, BT–BMZ) to realize optimum properties with a flat platform of dielectric constant and high breakdown strength for excellent energy storage performance at high temperature. Through optimizing the multilayer structure, a highly stable relaxor ferroelectric state is obtained for the BST/BT–BMZ multilayer thin-film capacitor with a total thickness of 230 nm, a period number N = 8, and a layer thickness ratio of BST/BT–BMZ = 3/7. The optimized multilayer film shows significantly improved energy storage density (up to 30.64 J/cm3) and energy storage efficiency (over 70.93%) in an ultrawide temperature range from room temperature to 250 °C. Moreover, the multilayer system also exhibits excellent thermal stability in such an ultrawide temperature range with a change of 5.15 and 12.75% for the recoverable energy density and energy storage efficiency, respectively. Our results demonstrate that the designed thin-film capacitor is promising for the application in a harsh environment and open a way to tailor a thin-film capacitor toward higher working temperature with enhanced energy storage performance.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ma, Chunrui
|0 0000-0002-7824-7930
|b 1
|e Corresponding author
700 1 _ |a Dai, Yanzhu
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fan, Qiaolan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liu, Ming
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 5
773 _ _ |a 10.1021/acsami.0c05560
|g Vol. 12, no. 23, p. 25930 - 25937
|0 PERI:(DE-600)2467494-1
|n 23
|p 25930 - 25937
|t ACS applied materials & interfaces
|v 12
|y 2020
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/878255/files/acsami.0c05560.pdf
856 4 _ |y Published on 2020-05-15. Available in OpenAccess from 2021-05-15.
|u https://juser.fz-juelich.de/record/878255/files/HU_TianYi.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/878255/files/acsami.0c05560.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878255
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130736
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-05
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2018
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2018
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21