001 | 878255 | ||
005 | 20210130005514.0 | ||
024 | 7 | _ | |a 10.1021/acsami.0c05560 |2 doi |
024 | 7 | _ | |a 1944-8244 |2 ISSN |
024 | 7 | _ | |a 1944-8252 |2 ISSN |
024 | 7 | _ | |a 2128/25839 |2 Handle |
024 | 7 | _ | |a pmid:32412230 |2 pmid |
024 | 7 | _ | |a WOS:000541679900042 |2 WOS |
037 | _ | _ | |a FZJ-2020-02724 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Hu, Tian-Yi |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Enhanced Energy Storage Performance of Lead-Free Capacitors in an Ultrawide Temperature Range via Engineering Paraferroelectric and Relaxor Ferroelectric Multilayer Films |
260 | _ | _ | |a Washington, DC |c 2020 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1601993578_2081 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Industry has been seeking a thin-film capacitor that can work at high temperature in a harsh environment, where cooling systems are not desired. Up to now, the working temperature of the thin-film capacitor is still limited up to 200 °C. Herein, we design a multilayer structure with layers of paraferroelectric (Ba0.3Sr0.7TiO3, BST) and relaxor ferroelectric (0.85BaTiO3–0.15Bi(Mg0.5Zr0.5)O3, BT–BMZ) to realize optimum properties with a flat platform of dielectric constant and high breakdown strength for excellent energy storage performance at high temperature. Through optimizing the multilayer structure, a highly stable relaxor ferroelectric state is obtained for the BST/BT–BMZ multilayer thin-film capacitor with a total thickness of 230 nm, a period number N = 8, and a layer thickness ratio of BST/BT–BMZ = 3/7. The optimized multilayer film shows significantly improved energy storage density (up to 30.64 J/cm3) and energy storage efficiency (over 70.93%) in an ultrawide temperature range from room temperature to 250 °C. Moreover, the multilayer system also exhibits excellent thermal stability in such an ultrawide temperature range with a change of 5.15 and 12.75% for the recoverable energy density and energy storage efficiency, respectively. Our results demonstrate that the designed thin-film capacitor is promising for the application in a harsh environment and open a way to tailor a thin-film capacitor toward higher working temperature with enhanced energy storage performance. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Ma, Chunrui |0 0000-0002-7824-7930 |b 1 |e Corresponding author |
700 | 1 | _ | |a Dai, Yanzhu |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Fan, Qiaolan |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Liu, Ming |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Jia, Chun-Lin |0 P:(DE-Juel1)130736 |b 5 |
773 | _ | _ | |a 10.1021/acsami.0c05560 |g Vol. 12, no. 23, p. 25930 - 25937 |0 PERI:(DE-600)2467494-1 |n 23 |p 25930 - 25937 |t ACS applied materials & interfaces |v 12 |y 2020 |x 1944-8252 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878255/files/acsami.0c05560.pdf |
856 | 4 | _ | |y Published on 2020-05-15. Available in OpenAccess from 2021-05-15. |u https://juser.fz-juelich.de/record/878255/files/HU_TianYi.pdf |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/878255/files/acsami.0c05560.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:878255 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130736 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-01-05 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-05 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2018 |d 2020-01-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-05 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-05 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-05 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2018 |d 2020-01-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-05 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|