000878256 001__ 878256
000878256 005__ 20210130005515.0
000878256 0247_ $$2doi$$a10.1021/acs.nanolett.9b04741
000878256 0247_ $$2ISSN$$a1530-6984
000878256 0247_ $$2ISSN$$a1530-6992
000878256 0247_ $$2Handle$$a2128/25448
000878256 0247_ $$2altmetric$$aaltmetric:73816282
000878256 0247_ $$2pmid$$apmid:31904971
000878256 0247_ $$2WOS$$aWOS:000514255400057
000878256 037__ $$aFZJ-2020-02725
000878256 041__ $$aEnglish
000878256 082__ $$a660
000878256 1001_ $$00000-0002-2634-6275$$aZhang, Jinying$$b0$$eCorresponding author
000878256 245__ $$aChanging the Phosphorus Allotrope from a Square Columnar Structure to a Planar Zigzag Nanoribbon by Increasing the Diameter of Carbon Nanotube Nanoreactors
000878256 260__ $$aWashington, DC$$bACS Publ.$$c2020
000878256 3367_ $$2DRIVER$$aarticle
000878256 3367_ $$2DataCite$$aOutput Types/Journal article
000878256 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596701645_32287
000878256 3367_ $$2BibTeX$$aARTICLE
000878256 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878256 3367_ $$00$$2EndNote$$aJournal Article
000878256 520__ $$aElemental phosphorus nanostructures are notorious for a large number of allotropes, which limits their usefulness as semiconductors. To limit this structural diversity, we synthesize selectively quasi-1D phosphorus nanostructures inside carbon nanotubes (CNTs) that act both as stable templates and nanoreactors. Whereas zigzag phosphorus nanoribbons form preferably in CNTs with an inner diameter exceeding 1.4 nm, a previously unknown square columnar structure of phosphorus is observed to form inside narrower nanotubes. Our findings are supported by electron microscopy and Raman spectroscopy observations as well as ab initio density functional theory calculations. Our computational results suggest that square columnar structures form preferably in CNTs with an inner diameter around 1.0 nm, whereas black phosphorus nanoribbons form preferably inside CNTs with a 4.1 nm inner diameter, with zigzag nanoribbons energetically favored over armchair nanoribbons. Our theoretical predictions agree with the experimental findings
000878256 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878256 588__ $$aDataset connected to CrossRef
000878256 7001_ $$0P:(DE-HGF)0$$aFu, Chengcheng$$b1
000878256 7001_ $$0P:(DE-HGF)0$$aSong, Shixin$$b2
000878256 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b3
000878256 7001_ $$0P:(DE-Juel1)177931$$aZhao, Dan$$b4
000878256 7001_ $$0P:(DE-HGF)0$$aHuang, Hongyang$$b5
000878256 7001_ $$0P:(DE-HGF)0$$aZhang, Lihui$$b6
000878256 7001_ $$00000-0003-2620-2279$$aGuan, Jie$$b7
000878256 7001_ $$0P:(DE-HGF)0$$aZhang, Yifan$$b8
000878256 7001_ $$00000-0003-2139-8583$$aZhao, Xinluo$$b9
000878256 7001_ $$0P:(DE-HGF)0$$aMa, Chuansheng$$b10
000878256 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b11
000878256 7001_ $$0P:(DE-HGF)0$$aTománek, David$$b12
000878256 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.9b04741$$gVol. 20, no. 2, p. 1280 - 1285$$n2$$p1280 - 1285$$tNano letters$$v20$$x1530-6992$$y2020
000878256 8564_ $$uhttps://juser.fz-juelich.de/record/878256/files/acs.nanolett.9b04741.pdf
000878256 8564_ $$uhttps://juser.fz-juelich.de/record/878256/files/2001.02871.pdf$$yPublished on 2020-01-06. Available in OpenAccess from 2021-01-06.
000878256 8564_ $$uhttps://juser.fz-juelich.de/record/878256/files/acs.nanolett.9b04741.pdf?subformat=pdfa$$xpdfa
000878256 8564_ $$uhttps://juser.fz-juelich.de/record/878256/files/2001.02871.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-01-06. Available in OpenAccess from 2021-01-06.
000878256 909CO $$ooai:juser.fz-juelich.de:878256$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878256 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b3$$kFZJ
000878256 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b11$$kFZJ
000878256 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878256 9141_ $$y2020
000878256 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000878256 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000878256 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-06
000878256 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878256 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-06
000878256 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2018$$d2020-01-06
000878256 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000878256 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-06
000878256 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000878256 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-06
000878256 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2018$$d2020-01-06
000878256 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-06
000878256 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000878256 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000878256 920__ $$lyes
000878256 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878256 980__ $$ajournal
000878256 980__ $$aVDB
000878256 980__ $$aUNRESTRICTED
000878256 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878256 9801_ $$aFullTexts