001     878256
005     20210130005515.0
024 7 _ |a 10.1021/acs.nanolett.9b04741
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 2128/25448
|2 Handle
024 7 _ |a altmetric:73816282
|2 altmetric
024 7 _ |a pmid:31904971
|2 pmid
024 7 _ |a WOS:000514255400057
|2 WOS
037 _ _ |a FZJ-2020-02725
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Zhang, Jinying
|0 0000-0002-2634-6275
|b 0
|e Corresponding author
245 _ _ |a Changing the Phosphorus Allotrope from a Square Columnar Structure to a Planar Zigzag Nanoribbon by Increasing the Diameter of Carbon Nanotube Nanoreactors
260 _ _ |a Washington, DC
|c 2020
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1596701645_32287
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Elemental phosphorus nanostructures are notorious for a large number of allotropes, which limits their usefulness as semiconductors. To limit this structural diversity, we synthesize selectively quasi-1D phosphorus nanostructures inside carbon nanotubes (CNTs) that act both as stable templates and nanoreactors. Whereas zigzag phosphorus nanoribbons form preferably in CNTs with an inner diameter exceeding 1.4 nm, a previously unknown square columnar structure of phosphorus is observed to form inside narrower nanotubes. Our findings are supported by electron microscopy and Raman spectroscopy observations as well as ab initio density functional theory calculations. Our computational results suggest that square columnar structures form preferably in CNTs with an inner diameter around 1.0 nm, whereas black phosphorus nanoribbons form preferably inside CNTs with a 4.1 nm inner diameter, with zigzag nanoribbons energetically favored over armchair nanoribbons. Our theoretical predictions agree with the experimental findings
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fu, Chengcheng
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Song, Shixin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Du, Hongchu
|0 P:(DE-Juel1)145710
|b 3
700 1 _ |a Zhao, Dan
|0 P:(DE-Juel1)177931
|b 4
700 1 _ |a Huang, Hongyang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zhang, Lihui
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Guan, Jie
|0 0000-0003-2620-2279
|b 7
700 1 _ |a Zhang, Yifan
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zhao, Xinluo
|0 0000-0003-2139-8583
|b 9
700 1 _ |a Ma, Chuansheng
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 11
700 1 _ |a Tománek, David
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1021/acs.nanolett.9b04741
|g Vol. 20, no. 2, p. 1280 - 1285
|0 PERI:(DE-600)2048866-X
|n 2
|p 1280 - 1285
|t Nano letters
|v 20
|y 2020
|x 1530-6992
856 4 _ |u https://juser.fz-juelich.de/record/878256/files/acs.nanolett.9b04741.pdf
856 4 _ |y Published on 2020-01-06. Available in OpenAccess from 2021-01-06.
|u https://juser.fz-juelich.de/record/878256/files/2001.02871.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/878256/files/acs.nanolett.9b04741.pdf?subformat=pdfa
856 4 _ |y Published on 2020-01-06. Available in OpenAccess from 2021-01-06.
|x pdfa
|u https://juser.fz-juelich.de/record/878256/files/2001.02871.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878256
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130736
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-06
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-06
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21