000878262 001__ 878262
000878262 005__ 20210130005519.0
000878262 0247_ $$2doi$$a10.1021/acsami.0c03154
000878262 0247_ $$2ISSN$$a1944-8244
000878262 0247_ $$2ISSN$$a1944-8252
000878262 0247_ $$2Handle$$a2128/25896
000878262 0247_ $$2altmetric$$aaltmetric:80857372
000878262 0247_ $$2pmid$$apmid:32301601
000878262 0247_ $$2WOS$$aWOS:000535246100045
000878262 037__ $$aFZJ-2020-02731
000878262 041__ $$aEnglish
000878262 082__ $$a600
000878262 1001_ $$0P:(DE-Juel1)145420$$aWei, Xian-Kui$$b0$$eCorresponding author
000878262 245__ $$aSelf-Epitaxial Hetero-Nanolayers and Surface Atom Reconstruction in Electrocatalytic Nickel Phosphides
000878262 260__ $$aWashington, DC$$bSoc.$$c2020
000878262 3367_ $$2DRIVER$$aarticle
000878262 3367_ $$2DataCite$$aOutput Types/Journal article
000878262 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602836098_16703
000878262 3367_ $$2BibTeX$$aARTICLE
000878262 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878262 3367_ $$00$$2EndNote$$aJournal Article
000878262 520__ $$aSurface atomic, compositional, and electronic structures play decisive roles in governing the performance of catalysts during electrochemical reactions. Nevertheless, for efficient and cheap transition-metal phosphides used for water splitting, such atomic-scale structural information is largely missing. Despite much effort being made so far, there is still a long way to go for establishing a precise structure–activity relationship. Here, in combination with electron-beam bombardment and compositional analysis, our atomic-scale transmission electron microscopy study on Ni5P4 nanosheets, with a preferential (001) orientation, directly reveals the coverage of a self-epitaxial Ni2P nanolayer on the phosphide surface. Apart from the presence of nickel vacancies in the Ni5P4 phase, our quantum-mechanical image simulations also suggest the existence of an additional NiPx (0 < x < 0.5) nanolayer, characteristic of complex surface atom reconstruction, on the outermost surface of the phosphides. The surface chemical gradient and the core–shell scenario, probably responsible for the passivated catalytic activity, provide a novel insight to understand the catalytic performance of transition-metal catalysts used for electrochemical energy conversion.
000878262 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878262 536__ $$0G:(EU-Grant)686053$$aCritCat - Towards Replacement of Critical Catalyst Materials by Improved Nanoparticle Control and Rational Design (686053)$$c686053$$fH2020-NMP-2015-two-stage$$x1
000878262 588__ $$aDataset connected to CrossRef
000878262 7001_ $$00000-0002-4714-9019$$aXiong, Dehua$$b1
000878262 7001_ $$00000-0003-2732-7399$$aLiu, Lifeng$$b2
000878262 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b3$$ufzj
000878262 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.0c03154$$gVol. 12, no. 19, p. 21616 - 21622$$n19$$p21616 - 21622$$tACS applied materials & interfaces$$v12$$x1944-8252$$y2020
000878262 8564_ $$uhttps://juser.fz-juelich.de/record/878262/files/acsami.0c03154.pdf
000878262 8564_ $$uhttps://juser.fz-juelich.de/record/878262/files/Wei%20et%20al-ACS%20Appl.%20Mater.%20Interfaces-Revised.pdf$$yPublished on 2020-04-17. Available in OpenAccess from 2021-04-17.
000878262 8564_ $$uhttps://juser.fz-juelich.de/record/878262/files/Wei%20et%20al-ACS%20Appl.%20Mater.%20Interfaces-Revised.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-04-17. Available in OpenAccess from 2021-04-17.
000878262 8564_ $$uhttps://juser.fz-juelich.de/record/878262/files/acsami.0c03154.pdf?subformat=pdfa$$xpdfa
000878262 909CO $$ooai:juser.fz-juelich.de:878262$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000878262 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145420$$aForschungszentrum Jülich$$b0$$kFZJ
000878262 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b3$$kFZJ
000878262 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878262 9141_ $$y2020
000878262 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000878262 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000878262 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-05
000878262 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878262 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-05
000878262 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2018$$d2020-01-05
000878262 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000878262 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-05
000878262 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000878262 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2018$$d2020-01-05
000878262 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-05
000878262 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05
000878262 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000878262 920__ $$lyes
000878262 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878262 980__ $$ajournal
000878262 980__ $$aVDB
000878262 980__ $$aUNRESTRICTED
000878262 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878262 9801_ $$aFullTexts