001     878262
005     20210130005519.0
024 7 _ |a 10.1021/acsami.0c03154
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a 2128/25896
|2 Handle
024 7 _ |a altmetric:80857372
|2 altmetric
024 7 _ |a pmid:32301601
|2 pmid
024 7 _ |a WOS:000535246100045
|2 WOS
037 _ _ |a FZJ-2020-02731
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Wei, Xian-Kui
|0 P:(DE-Juel1)145420
|b 0
|e Corresponding author
245 _ _ |a Self-Epitaxial Hetero-Nanolayers and Surface Atom Reconstruction in Electrocatalytic Nickel Phosphides
260 _ _ |a Washington, DC
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602836098_16703
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Surface atomic, compositional, and electronic structures play decisive roles in governing the performance of catalysts during electrochemical reactions. Nevertheless, for efficient and cheap transition-metal phosphides used for water splitting, such atomic-scale structural information is largely missing. Despite much effort being made so far, there is still a long way to go for establishing a precise structure–activity relationship. Here, in combination with electron-beam bombardment and compositional analysis, our atomic-scale transmission electron microscopy study on Ni5P4 nanosheets, with a preferential (001) orientation, directly reveals the coverage of a self-epitaxial Ni2P nanolayer on the phosphide surface. Apart from the presence of nickel vacancies in the Ni5P4 phase, our quantum-mechanical image simulations also suggest the existence of an additional NiPx (0 < x < 0.5) nanolayer, characteristic of complex surface atom reconstruction, on the outermost surface of the phosphides. The surface chemical gradient and the core–shell scenario, probably responsible for the passivated catalytic activity, provide a novel insight to understand the catalytic performance of transition-metal catalysts used for electrochemical energy conversion.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
536 _ _ |a CritCat - Towards Replacement of Critical Catalyst Materials by Improved Nanoparticle Control and Rational Design (686053)
|0 G:(EU-Grant)686053
|c 686053
|f H2020-NMP-2015-two-stage
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Xiong, Dehua
|0 0000-0002-4714-9019
|b 1
700 1 _ |a Liu, Lifeng
|0 0000-0003-2732-7399
|b 2
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 3
|u fzj
773 _ _ |a 10.1021/acsami.0c03154
|g Vol. 12, no. 19, p. 21616 - 21622
|0 PERI:(DE-600)2467494-1
|n 19
|p 21616 - 21622
|t ACS applied materials & interfaces
|v 12
|y 2020
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/878262/files/acsami.0c03154.pdf
856 4 _ |y Published on 2020-04-17. Available in OpenAccess from 2021-04-17.
|u https://juser.fz-juelich.de/record/878262/files/Wei%20et%20al-ACS%20Appl.%20Mater.%20Interfaces-Revised.pdf
856 4 _ |y Published on 2020-04-17. Available in OpenAccess from 2021-04-17.
|x pdfa
|u https://juser.fz-juelich.de/record/878262/files/Wei%20et%20al-ACS%20Appl.%20Mater.%20Interfaces-Revised.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/878262/files/acsami.0c03154.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878262
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145420
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-05
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2018
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2018
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21