000878266 001__ 878266
000878266 005__ 20240709082220.0
000878266 0247_ $$2doi$$a10.1038/s41563-019-0555-5
000878266 0247_ $$2ISSN$$a1476-1122
000878266 0247_ $$2ISSN$$a1476-4660
000878266 0247_ $$2Handle$$a2128/25636
000878266 0247_ $$2altmetric$$aaltmetric:72904809
000878266 0247_ $$2pmid$$apmid:31844277
000878266 0247_ $$2WOS$$aWOS:000518222200012
000878266 037__ $$aFZJ-2020-02735
000878266 041__ $$aEnglish
000878266 082__ $$a610
000878266 1001_ $$0P:(DE-HGF)0$$aGöhl, Daniel$$b0
000878266 245__ $$aEngineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells
000878266 260__ $$aBasingstoke$$bNature Publishing Group$$c2020
000878266 3367_ $$2DRIVER$$aarticle
000878266 3367_ $$2DataCite$$aOutput Types/Journal article
000878266 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603725905_4385
000878266 3367_ $$2BibTeX$$aARTICLE
000878266 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878266 3367_ $$00$$2EndNote$$aJournal Article
000878266 520__ $$aCore–shell particles with earth-abundant cores represent an effective design strategy for improving the performance of noble metal catalysts, while simultaneously reducing the content of expensive noble metals1,2,3,4. However, the structural and catalytic stabilities of these materials often suffer during the harsh conditions encountered in important reactions, such as the oxygen reduction reaction (ORR)3,4,5. Here, we demonstrate that atomically thin Pt shells stabilize titanium tungsten carbide cores, even at highly oxidizing potentials. In situ, time-resolved experiments showed how the Pt coating protects the normally labile core against oxidation and dissolution, and detailed microscopy studies revealed the dynamics of partially and fully coated core–shell nanoparticles during potential cycling. Particles with complete Pt coverage precisely maintained their core–shell structure and atomic composition during accelerated electrochemical ageing studies consisting of over 10,000 potential cycles. The exceptional durability of fully coated materials highlights the potential of core–shell architectures using earth-abundant transition metal carbide (TMC) and nitride (TMN) cores for future catalytic applications.
000878266 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878266 536__ $$0G:(GEPRIS)257727131$$aDFG project 257727131 - Nanoskalige Pt Legierungselektrokatalysatoren mit definierter Morphologie: Synthese, Electrochemische Analyse, und ex-situ/in-situ Transmissionselektronenmikroskopische (TEM) Studien (257727131)$$c257727131$$x1
000878266 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x2
000878266 588__ $$aDataset connected to CrossRef
000878266 7001_ $$0P:(DE-HGF)0$$aGarg, Aaron$$b1
000878266 7001_ $$0P:(DE-Juel1)151296$$aPaciok, Paul$$b2$$ufzj
000878266 7001_ $$0P:(DE-Juel1)168125$$aMayrhofer, Karl J. J.$$b3
000878266 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b4$$ufzj
000878266 7001_ $$0P:(DE-HGF)0$$aShao-Horn, Yang$$b5
000878266 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b6$$ufzj
000878266 7001_ $$00000-0002-0025-4233$$aRomán-Leshkov, Yuriy$$b7
000878266 7001_ $$00000-0003-3740-401X$$aLedendecker, Marc$$b8$$eCorresponding author
000878266 773__ $$0PERI:(DE-600)2088679-2$$a10.1038/s41563-019-0555-5$$gVol. 19, no. 3, p. 287 - 291$$n3$$p287 - 291$$tNature materials$$v19$$x1476-4660$$y2020
000878266 8564_ $$uhttps://juser.fz-juelich.de/record/878266/files/62038_2_merged_1573146138.pdf$$yPublished on 2019-12-16. Available in OpenAccess from 2020-06-16.
000878266 8564_ $$uhttps://juser.fz-juelich.de/record/878266/files/62038_2_merged_1573146138.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-12-16. Available in OpenAccess from 2020-06-16.
000878266 909CO $$ooai:juser.fz-juelich.de:878266$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878266 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151296$$aForschungszentrum Jülich$$b2$$kFZJ
000878266 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168125$$aForschungszentrum Jülich$$b3$$kFZJ
000878266 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b4$$kFZJ
000878266 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b6$$kFZJ
000878266 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878266 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x1
000878266 9141_ $$y2020
000878266 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878266 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MATER : 2018$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT MATER : 2018$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000878266 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-17$$wger
000878266 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000878266 920__ $$lyes
000878266 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878266 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x1
000878266 9801_ $$aFullTexts
000878266 980__ $$ajournal
000878266 980__ $$aVDB
000878266 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878266 980__ $$aI:(DE-Juel1)IEK-11-20140314
000878266 980__ $$aUNRESTRICTED
000878266 981__ $$aI:(DE-Juel1)IET-2-20140314