000878267 001__ 878267
000878267 005__ 20210130005524.0
000878267 0247_ $$2doi$$a10.1111/jace.16937
000878267 0247_ $$2ISSN$$a0002-7820
000878267 0247_ $$2ISSN$$a1551-2916
000878267 0247_ $$2Handle$$a2128/25793
000878267 0247_ $$2WOS$$aWOS:000502396000001
000878267 037__ $$aFZJ-2020-02736
000878267 041__ $$aEnglish
000878267 082__ $$a660
000878267 1001_ $$0P:(DE-Juel1)176812$$aSong, Dongsheng$$b0$$ufzj
000878267 245__ $$aObservation of oxygen pyramid tilting induced polarization rotation in strained BiFeO3 thin film
000878267 260__ $$aWesterville, Ohio$$bSoc.$$c2020
000878267 3367_ $$2DRIVER$$aarticle
000878267 3367_ $$2DataCite$$aOutput Types/Journal article
000878267 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601485732_25205
000878267 3367_ $$2BibTeX$$aARTICLE
000878267 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878267 3367_ $$00$$2EndNote$$aJournal Article
000878267 520__ $$aOxygen octahedral tilting has been recognized to strongly interact with spin, charge, orbital, and lattice degrees of freedom in perovskite oxides. Here, we observe a strain‐driven stripe‐like morphology of two supertetragonal (monoclinic Cc and Cm) phases in the strained BiFeO3/LaAlO3 thin films. The two supertetragonal phases have a similar giant axial ratio but differences in oxygen pyramid tilting mode. Especially, the competition between polar instability and oxygen pyramid tilting is identified using atomically resolved scanning transmission electron microscopy, leading to the polarization rotation across the phase boundary. In addition, microtwins are observed in the Cc phase. Our findings provide new insights of the coupling between ferroelectric polarization and oxygen pyramid tilting in oxide thin films and will help to design novel phase morphology with desirable ferroelectric polarization and properties for new applications in perovskite oxides.
000878267 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878267 536__ $$0G:(EU-Grant)320832$$aIMAGINE - Imaging Magnetism in Nanostructures using Electron Holography (320832)$$c320832$$fERC-2012-ADG_20120216$$x1
000878267 588__ $$aDataset connected to CrossRef
000878267 7001_ $$0P:(DE-HGF)0$$aLiu, Heng‐Jui$$b1
000878267 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b2$$ufzj
000878267 7001_ $$0P:(DE-HGF)0$$aDunin‐Borkowski, Rafal E.$$b3
000878267 7001_ $$0P:(DE-HGF)0$$aChu, Ying‐Hao$$b4
000878267 7001_ $$00000-0002-2175-9476$$aZhu, Jing$$b5$$eCorresponding author
000878267 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.16937$$gVol. 103, no. 4, p. 2828 - 2834$$n4$$p2828 - 2834$$tJournal of the American Ceramic Society$$v103$$x1551-2916$$y2020
000878267 8564_ $$uhttps://juser.fz-juelich.de/record/878267/files/jace.16937.pdf
000878267 8564_ $$uhttps://juser.fz-juelich.de/record/878267/files/Observation%20of%20oxygen.pdf$$yPublished on 2019-11-29. Available in OpenAccess from 2020-11-29.
000878267 8564_ $$uhttps://juser.fz-juelich.de/record/878267/files/jace.16937.pdf?subformat=pdfa$$xpdfa
000878267 8564_ $$uhttps://juser.fz-juelich.de/record/878267/files/Observation%20of%20oxygen.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-11-29. Available in OpenAccess from 2020-11-29.
000878267 909CO $$ooai:juser.fz-juelich.de:878267$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000878267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176812$$aForschungszentrum Jülich$$b0$$kFZJ
000878267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b2$$kFZJ
000878267 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878267 9141_ $$y2020
000878267 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000878267 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000878267 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000878267 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000878267 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878267 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2018$$d2020-02-26
000878267 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878267 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878267 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000878267 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000878267 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000878267 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000878267 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000878267 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000878267 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger
000878267 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878267 920__ $$lyes
000878267 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878267 980__ $$ajournal
000878267 980__ $$aVDB
000878267 980__ $$aUNRESTRICTED
000878267 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878267 9801_ $$aFullTexts