001     878269
005     20230310131354.0
024 7 _ |a 10.3390/w12082157
|2 doi
024 7 _ |a 2128/25455
|2 Handle
024 7 _ |a altmetric:87084581
|2 altmetric
024 7 _ |a WOS:000564898000001
|2 WOS
037 _ _ |a FZJ-2020-02738
082 _ _ |a 690
100 1 _ |a Poméon, Thomas
|0 P:(DE-Juel1)177794
|b 0
|e Corresponding author
245 _ _ |a Performance of a PDE-Based Hydrologic Model in a Flash Flood Modeling Framework in Sparsely-Gauged Catchments
260 _ _ |a Basel
|c 2020
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1596721702_15368
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This study is part of the RealPEP (Near-Realtime Quantitative Precipitation Estimation and Prediction https://www2.meteo.uni-bonn.de/realpep/doku.php) P4 project (Evaluation of QPE and QPN improvements in a flash flood nowcasting framework with data assimilation), funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Grant No. FU 1185/1-1.
520 _ _ |a Modeling and nowcasting of flash floods remains challenging, mainly due to uncertainty of high-resolution spatial and temporal precipitation estimates, missing discharge observations of affected catchments and limitations of commonly used hydrologic models. In this study, we present a framework for flash flood hind- and nowcasting using the partial differential equation (PDE)-based ParFlow hydrologic model forced with quantitative radar precipitation estimates and nowcasts for a small 18.5 km2 headwater catchment in Germany. In the framework, an uncalibrated probabilistic modeling approach is applied. It accounts for model input uncertainty by forcing the model with precipitation inputs from different sources, and accounts for model parameter uncertainty by perturbing two spatially uniform soil hydraulic parameters. Thus, sources of uncertainty are propagated through the model and represented in the results. To demonstrate the advantages of the proposed framework, a commonly used conceptual model was applied over the same catchment for comparison. Results show the framework to be robust, with the uncalibrated PDE-based model matching streamflow observations reasonably. The model lead time was further improved when forced with precipitation nowcasts. This study successfully demonstrates a parsimonious application of the PDE-based ParFlow model in a flash flood hindcasting and nowcasting framework, which is of interest in applications to poorly or ungauged watersheds.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|x 0
|f POF III
536 _ _ |a SFB 986 MGK - Integriertes Graduiertenkolleg (MGK) (221133179)
|0 G:(GEPRIS)221133179
|c 221133179
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wagner, Niklas
|0 P:(DE-Juel1)178981
|b 1
|u fzj
700 1 _ |a Furusho, Carina
|0 P:(DE-Juel1)172902
|b 2
|u fzj
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 3
700 1 _ |a Reinoso-Rondinel, Ricardo
|0 P:(DE-HGF)0
|b 4
770 _ _ |a Advances in Flash Flood Forecasting
773 _ _ |a 10.3390/w12082157
|g Vol. 12, no. 8, p. 2157 -
|0 PERI:(DE-600)2521238-2
|n 8
|p 2157 -
|t Water
|v 12
|y 2020
|x 2073-4441
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878269/files/water-12-02157.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878269/files/water-12-02157.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878269
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178981
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)151405
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2019-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER-SUI : 2018
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2019-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2019-12-20
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2019-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2019-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2019-12-20
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2019-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21