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a b s t r a c t

The productivity of single-particle cryo-EM as a structure determination method has rapidly increased as
many novel biological structures are being elucidated. The ultimate result of the cryo-EM experiment is
an atomic model that should faithfully represent the computed image reconstruction. Although the
principal approach of atomic model building and refinement from maps resembles that of the X-ray
crystallographic methods, there are important differences due to the unique properties resulting from
the 3D image reconstructions. In this review, we discuss the practiced work-flow from the cryo-EM
image reconstruction to the atomic model. We give an overview of (i) resolution determination
methods in cryo-EM including local and directional resolution variation, (ii) cryo-EM map contrast
optimization including complementary map types that can help in identifying ambiguous density fea-
tures, (iii) atomic model building and (iv) refinement in various resolution regimes including (v) their
validation and (vi) discuss differences between X-ray and cryo-EM maps. Based on the methods origi-
nally developed for X-ray crystallography, the path from 3D image reconstruction to atomic coordinates
has become an integral and important part of the cryo-EM structure determination work-flow that
routinely delivers atomic models.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Atomic models derived from cryo-EM maps of protein structures
and nucleic acid complexes are becoming available at an increasing
rate (Callaway, 2020). Responsible for the surge in deposited Protein
databank (PDB) coordinates have been a series of technical de-
velopments that led to a boost in quality and productivity of the
cryo-EM structure determination work-flow. This development has
become known as the ‘resolution revolution’ (Kühlbrandt, 2014).
Previously, the generation of faithful atomic models was, in most
cases, reserved to the methods of X-ray crystallography and NMR
spectroscopy. For the majority of determined structures, cryo-EM is
now routinely resolving macromolecular assemblies at resolutions
between 2.5 and 4.0 Å. Critical to the cryo-EM developments have
been the introduction of direct electron detectors (McMullan et al.,
icroscopy and Spectroscopy with

.

r Ltd. This is an open access article
2016) in addition to extended automation of microscopes as well
as software advancements. Micrograph movies taken by direct
electron detectors improved high-resolution information transfer
(McMullan et al., 2014) and allowed the correction of beam-induced
motion (Brilot et al., 2012). Due to the better quality of raw images, a
series of computational algorithms can be employed (Grant et al.,
2018; Punjani et al., 2017; Scheres, 2012) all of which commonly
result in high-resolution image reconstructions. Once high-
resolution cryo-EM maps are available, atomic models are built to
represent the density features. Using this experimental approach,
structures of large macromolecular machines such as ribosomes,
RNA polymerases and spliceosomes (Brown et al., 2014; Hoffmann
et al., 2015; Nguyen et al., 2015) as well as smaller membrane pro-
teins (Liao et al., 2013) have been successfully determined between 3
and 4 Å resolution. For exceptionally stable test specimens,
Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich,
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resolutions below 2.0 Å have become available (Bartesaghi et al.,
2018; Danev et al., 2019; Kato et al., 2019; Tan et al., 2018; Weis
et al., 2019; Zivanov et al., 2018). Increasingly, single-particle cryo-
EM is also used for structure determination of smaller proteins up to
50 kDa (Fan et al., 2019; Herzik et al., 2019b).

The volumetric data obtained either by X-ray crystallographic or
cryo-EM methods contains a representation of the molecule of
interest, as either the electron density or the Coulomb potential,
respectively (Marques et al., 2019). In this manuscript, we will
synonymously use the terms cryo-EM density or cryo-EM map for
the measured Coulomb potential of the scattered atoms. The
interpretation usually involves the inspection of map isosurfaces in
computational graphics programs (Emsley and Cowtan, 2004;
Goddard et al., 2018; Schr€odinger, 2015) followed by a manual or
automated annotation of map features using atomic coordinates
and subsequent model refinement (Afonine et al., 2018b; Brown
et al., 2015). In the case of cryo-EM maps, this map analysis
work-flow can be conceptually separated in two steps: first, the
restoration of the appropriate balance of high-resolution vs. low-
resolution signal in the map (Rosenthal and Henderson, 2003);
second, based on these maps, the generation of an atomic model.
While the principal approach of building and refining atomic
models was developed for X-ray crystallographic approaches over
the past decades, it has been adapted to determine atomic model
coordinates based on cryo-EM densities. In this manuscript, wewill
review the principal path from cryo-EM 3D image reconstructions
to atomic coordinates including current state-of-the-art map
analysis, restoration and interpretation techniques of cryo-EM.

2. Resolution is the primary measure of map quality

Initially, 3D image reconstructions are analyzed by assessing the
map resolution in order to provide a quantitative measure of the
structural features to be discernible in the density. As the achieved
detail affects the possible follow-up strategies, we here discrimi-
nate between six approximate resolution regimes: structural shape
at 15 Å, protein fold at 10 Å, polypeptide path at 5 Å, side chains at
3 Å, water molecules at 2.5 Å and carbonyls at 2 Å (Fig. 1a).
Concurrently to writing this review, two manuscripts were
deposited on the BioRciv pre-print server showing two single-
particle cryo-EM maps determined at a resolution of 1.2 Å, which
represent the highest resolution structures to date (Nakane et al.,
2020; Yip et al., 2020). These maps show features at true atomic
resolution as individual atoms including hydrogens are discernible
as point densities. Similar to crystallography, resolution is quanti-
fied in Fourier space as the highest spatial frequency that contains
interpretable information about the structure of interest. Fourier
Shell correlation (FSC) has become the standard metric to estimate
resolution in cryo-EM (Harauz and Van Heel, 1986). A Fourier shell
correlation curve is computed from two 3D reconstructions or half-
maps that are generated from non-overlapping halves of the par-
ticle images (Grigorieff, 2000) (Fig. 1b). In order to prevent over-
fitting of noise during refinement of the half-maps and thereby
avoiding spurious correlations in the FSC, two half-maps are
generated from two disjoint sets of single-particle iterations
(Scheres and Chen, 2012). An alternative and equally effective
measure of avoiding overfitting of noise, is the omission of high-
resolution data during the alignment step of the iterative structure
refinement (Grigorieff, 2016). The FSC curve is obtained by
computing a correlation coefficient between the two half-maps’
Fourier coefficients for every resolution shell and plotting the
resulting Fourier correlations as function of increasing spatial fre-
quency. When half-maps contain similar structures that were
refined independently, the resulting curve shows high signal cor-
relations close to 1 at low resolutions and drops to 0 until noise
dominates at higher resolutions. Several FSC thresholds have been
proposed in order to report a single resolution value for the cryo-
EM structure. Despite some practical shortcomings involving
thresholding, the 0.143 threshold (Rosenthal and Henderson, 2003)
has become a de-facto standard for reporting high-resolution en-
tries in the EM databank (EMDB) entries as part of the PDB. His-
torically, a series of thresholds have been proposed startingwith a s
significance criterion (Saxton and Baumeister, 1982) as well as
modified 3s (Orlova et al., 1997; Van Heel and Schatz, 2005),
extended to the half-bit (Van Heel and Schatz, 2005) in addition to
fixed 0.5 (Liao and Frank, 2010) or 0.143 FSC thresholds (Rosenthal
and Henderson, 2003). While each of the thresholds can be used to
yield appropriate resolution estimates, all of them require a well-
defined structural mask for solvent flattening or prior knowledge
as the expected molecular volume of the signal (Grant et al., 2018;
Sindelar and Grigorieff, 2012). Masking in particular bears the
danger of introducing artificial correlations between half-maps
(Chen et al., 2013). Despite the wealth of studies, statistical anal-
ysis of Fourier shell correlation coefficients is a complex task, and
has therefore remained controversial (Heel and Schatz, 2017). More
recently, new procedures have been proposed that require less user
interference by including additional statistical FSC properties
(Beckers and Sachse, 2020; Rohou, 2020). As the approaches take
into account the sampling of resolution shells, they promise to
make resolution estimation more robust.

Although reporting a single resolution value for a cryo-EM map
is a common requirement for publishing and structure deposition,
the comprehensive understanding of the map resolution often
needs to be extended to take into account resolution differences
across a cryo-EM structure. Local resolution variation is mainly the
result of flexibility and heterogeneity in different parts of the
molecule in addition to incomplete angular coverage and align-
ment uncertainties at larger structural radii. In order to assess local
resolution differences, sliding windows from both half-maps are
used to calculate local FSC curves (Cardone et al., 2013), as it is
implemented in blocres as part of the Bsoft (Heymann and Belnap,
2007) or in sxresolution as part of the SPARX package (Hohn et al.,
2007). However, thresholding of local FSC curves poses additional
challenges due to limited sampling of Fourier coefficients in small
windows and procedures to yield improved resolutions from local
FSC estimates have been proposed recently (Beckers and Sachse,
2020; Rohou, 2020). In addition, several approaches have been
put forward for local resolution estimation, which do not require
FSC computations, including ResMap (Kucukelbir et al., 2014),
MonoRes (Vilas et al., 2018) and DeepRes (Ramírez-Aportela et al.,
2019). ResMap and MonoRes aim to identify local sinoid signal
features that can be found above background noise levels. DeepRes
is based on a convolutional neural network trained to recognize
structural features at defined resolutions. This approach is entirely
based on a resolution library of reference features and thus requires
correctly sharpened maps in order to estimate the correct resolu-
tion. Local resolution estimates have become a common way to
assess the quality of cryo-EM maps. We, therefore, conclude that
most experimentally determined cryo-EM structures can be better
described by a locally assigned resolution range rather than a single
resolution value meant to encompass the entire structure.

More recently, the characterization of resolution variation in
single-particle cryo-EM maps has been extended by assessment of
directional resolution differences, which results from an anisotropy
in views included in the 3D reconstruction. The underlying cause is
preferred orientation of particles on the EM grid, which will
severely affect the quality of the final map and can be identified by
elongated features perpendicular to the direction of well-
represented views (Tan et al., 2017). Moreover, it has been shown
that the FSC is inherently dependent on the projection distribution



Fig. 1. Resolution categories of cryo-EM structures and resolution determination.
(a) Cryo-EM map of b-galactosidase rendered at different resolutions revealing the structural shape (~15 Å), the protein fold (~10 Å), the polypeptide path (~5 Å), side-chains (~3 Å),
water molecules (~2.5 Å) and carbonyl groups (~2 Å). (b) Common way of determining the resolution of cryo-EM maps: independent half-maps are Fourier-transformed and
compared using the Fourier Shell correlation as a function of increasing resolution. The FSC threshold provides the reported resolution value. (c) In addition to the global resolution
of the complete map (left), local (center) and directional (right) resolution assess the resolution in distinct parts of the structure or display resolution differences in particular
particle orientations, respectively.
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(Baldwin and Lyumkis, 2020). In analogy to the missing wedge in
tomographic reconstructions (Diebolder et al., 2015), directional
resolutions can be estimated by a masking cone in the Fourier
transforms of both half-maps (Fig. 1c right) (Tan et al., 2017) and
thereby provide information about anisotropic sampling of views in
Fourier space. Furthermore, the combination of local and direc-
tional resolutions has been proposed to characterize cryo-EMmaps
in more complex tensor representations (Vilas et al., 2020).
Together, directional resolution measurements can be used to
directly assess the impact of preferred orientations on the final map
and provide clues about alternative data collection strategies; such
as deliberately including tilted views to further complement
missing information in the volume.
3. Optimal restoration of contrast in cryo-EM maps

The 3D image reconstruction procedure typically yields an in-
termediate result, as it does not exhibit the expected molecular
features of the determined resolution. Even though significant
high-resolution values are estimated, the corresponding features
may not be initially visible in the 3D reconstruction. This property
has been identified as a loss of contrast at higher resolutions and
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corresponds to a decay of high-resolution amplitudes in the form of
the B-factor falloff (Rosenthal and Henderson, 2003). In order to
estimate this B-factor, the logarithm of the radially averaged am-
plitudes is plotted against the squared reciprocal resolution (within
the range of 10 Å to the estimated resolution) and fitted to a linear
decay function in the so-called Guinier plot. The determined B-
factor can then be applied to the resolution shells to compensate for
the amplitude decay, in a process referred to as sharpening. In order
to avoid amplification of high-resolution background noise, the
sharpenedmap is filtered at the estimated resolution by a figure-of-
merit (FOM) weighting scheme (Rosenthal and Henderson, 2003)
(Fig. 2a). This “post-processing” procedure is implemented in many
single-particle software packages, and is therefore applied to most
cryo-EM maps deposited in the EMDB. Recent map analyses,
however, show that this procedure can result in suboptimal results
and can lead to amplitude falloffs often atypical of proteins (Jakobi
et al., 2017). As a result, the user often tests many different maps
generated by different apparent B-factors in a subjective manner
until molecular features can be visualized appropriately. A serious
concern of this rather subjective sharpening method, is the
amplification of map noise increasing discontinuity of density
features, which is usually referred to as over-sharpening.
Conversely, under-sharpening may occur and thereby low-
resolution features can still dominate existing and relevant high-
resolution features, leading to loss of interpretable detail. A more
quantitative approach that emulates this systematic testing of
applied B-factors is to evaluate the level of detail and its connec-
tivity by maximization of an adjusted “surface area” parameter in
sharpened maps (Terwilliger et al., 2018b).

As many single-particle maps exhibit local resolution variation
(see above), the discussed over and under-sharpened features are
regularly prominent in different parts of the map. When sharp-
ening is applied globally to the map using the average B-factor
derived from the Guinier plot, higher resolution features may still
be under-sharpened and low-resolution features over-sharpened.
For example, the high-resolution protein core may not contain
highest resolution features present in the map and the loops at the
map periphery may be noisy and discontinuous due to local over-
sharpening (Bartesaghi et al., 2015; Jakobi et al., 2017). The first
method to account for such local resolution differences was put
forward by local resolution filtering, i.e. filtering the map locally
according to local resolution estimates (Cardone et al., 2013), which
has since become implemented in several single-particle software
packages (e.g. RELION and cryoSPARC). In cases of resolution varia-
tion, local resolution filtering substantially improves the inter-
pretability of problematic regions, e.g. for flexible loops (Fig. 2b
left). The second method to address the issue of over and under-
sharpening are implementations of local sharpening (Jakobi et al.,
2017; Ramírez-Aportela et al., 2020; Terwilliger et al., 2018b).
Simple local B-factor estimation and compensation by Guinier
plotting is not sufficiently robust compared with local resolution
estimation. Alternatively, scaling of the rotationally averaged am-
plitudes of the local map cubes (LocScale) according to a simulated
map, derived from a refined atomic model, can be employed (Jakobi
et al., 2017). By applying LocScale, the visual map representation
improves for model interpretation and ultimately the refinement of
atomic coordinates benefits from local amplitude scaling. Another
local sharpening approach termed LocalDeblur performs a Wiener
restoration based on local resolutions and is independent of the
requirement of an atomic model (Ramírez-Aportela et al., 2020).
Furthermore, phenix.auto_sharpen of the Phenix software suite also
offers the option of a local sharpening (Terwilliger et al., 2018b).

In addition to Coulomb potential maps, new complementary
map types have been developed to aid the interpretation of map
features. Confidence maps are maps that contain false discovery
rates derived from solvent noise of the map, which is routine and
robust procedure applied in many other imaging areas (Genovese
et al., 2002). When applied to cryo-EM maps, they allow the
interpretation and thresholding of the 3D volume by means of
statistical significance (Beckers et al., 2019). These maps are
generated from sharpened volumes in order to estimate back-
ground noise, and optionally local resolution information can be
included. Suchmaps bear the potential of providing amore uniform
threshold than common cryo-EMmaps. In particular, for isosurface
rendering they show density associated with significance, which is
helpful when visualizing and inspecting weak density features such
as loops and ligands (Fig. 2b right). Another approach that com-
plements interpretation of cryo-EM maps is a local denoising al-
gorithm named LAFTER. It applies noise suppression based on a
serial real-space filter requiring the two half maps as input
(Ramlaul et al., 2019). Despite the utility of both LAFTER and Con-
fidence maps, however, they should not be used for atomic model
refinement, as they do not preserve the Coulomb potential, i.e.
scattering differences from different atoms. For example, the
different scattering properties of a Ca-atom and Ca2þ-atom will
give rise to stronger cryo-EM density for the metal atom although
the density of the two different atoms may have a very similar
significance level when compared with background noise. As
model refinement programs do not take into account significance
levels but rather electron scattering factors, Confidence maps will
be beneficial for providing complementary map information
alongside the cryo-EM density. In analogy, X-ray crystallographic
model building is commonly helped by complementary maps such
as OMIT maps that help the interpretation of difficult features.

4. Model building using cryo-EM maps

For the final in-depth analysis of cryo-EM structures, atomic
models provide the basis to chemically interpret the protein or
nucleic acid’s function. These models are often utilized by non-
structural biologists to put their own work into context and infer
new hypotheses from the molecular structures. As cryo-EM struc-
tures tend to be determined from largemacromolecular complexes,
consequently there are often large numbers of atoms that need to
be modelled. Therefore, model building of these structures is labor-
intensive and often still requires an elaborate know-how of build-
ing protein structures. The final PDB/mmCIF deposition contains 3D
coordinates of atoms with very high accuracy (Westbrook and
Fitzgerald, 2005), including the sub-Å position of different atom
types, bond lengths, stereochemistry and side-chain rotamers.
Thus, building of models with subatomic precision into maps with
commonly observed resolutions of 3e4 Å can only be achieved by
incorporating prior knowledge of reference bond length and bond
angle parameters. (Berkholz et al., 2009; Engh and Huber, 1991;
Tronrud et al., 2010).

Map resolution dictates how much prior knowledge has to be
incorporated into the subsequent model building steps. Lower
resolutions allow recognition of domains, folds, possibly secondary
structure elements and existing X-ray or NMR structures in the
densities. Such models can also be used to assign the correct
handedness to cryo-EMmaps, as it usually cannot be deduced from
the 3D image reconstruction alone. The imaged particles represent
projections of the macromolecule and the image reconstruction
procedure has, in principle, two equivalent structure solutions of
opposite handedness. While micrograph tilting can be used to
determine the absolute hand (Rosenthal and Henderson, 2003), in
most cases twomap versions of opposite handedness are generated
and inspected for recognizing density features of reference struc-
tures. For example, a domain consisting of a 4-helix bundle motif
exhibits a preferred handedness recognizable at resolutions of
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~10 Å or the backbone of an a-helix follows a right-handedwinding
path along the helix, which can be recognized at resolutions better
than 5 Å. Once the map of the correct handedness has been iden-
tified, the methods described below can be used.

Common protocols applied at lower resolution often involve
homology modeling generated by platforms such as Phyre2 (Kelley
et al., 2015), Modeller (Webb and Sali, 2016) and SWISS-MODEL
(Roy et al., 2010; Waterhouse et al., 2018). Haddock’s POWERFIT
(Dominguez et al., 2003) and Situs (Wriggers and Birmanns, 2001)
can place rigid body models or determined structures in the
optimal fit position. DireX is a flexible fitting software package that
employs deformable elastic network (DEN) restraints derived from
experimental structures or homology models (Schr€oder et al.,
2007). Similarly, predicted structures or models can be rigidly
docked into a map and individual regions can then be further
refined using restrained molecular dynamics (Topf et al., 2008;
Trabuco et al., 2008). At polypeptide resolution, EMAN2’s path-
walker automatically traces the protein backbone in the cryo-EM
density (Chen et al., 2016). Around 4.5 Å resolution, when b-
strands become visible, ROSETTA derived force fields (Leaver-Fay
et al., 2011) in combination with cryo-EM density fitting have
been demonstrated to generate atomic models in an automated
fashion (Wang et al., 2015).

For structures better than 3.5 Å, complete atomic models can in
principle be obtained de novo when no reference structure is
available, as side-chains become discernible and the primary
structure is known in most cases. After obtaining the 3D recon-
struction, map sharpening is required to identify high-resolution
features, whose connectivity can be visually validated by refer-
ence structures or parts of an atomic model (Fig. 3a and b) (see
above). Next, individual subunits are segmented in the map, if
possible (Fig. 3c). Symmetry information such as point group or
helical symmetry imposed on the 3D reconstruction can already be
helpful in this process. Identifying different chains or subunits in
large maps can be challenging. Practically, this process of
discerning and assigning subunits or folds is facilitated by low-pass
filtering of the map to remove unnecessary details and followed by
repeated map inspection in interactive viewers such as UCSF
Chimera (Pettersen et al., 2004). The process of segmentation can
be assisted by computational tools such as Segger that uses the
watershed algorithm and is conveniently integrated in UCSF
Chimera (Pintilie et al., 2010). When partial or complete models are
available, global docking algorithms can be used to identify certain
map parts (Afonine et al., 2018a). In addition, domain recognition
algorithms like the BALBES database that contains a repository of
clustered domain structures derived from high-resolution X-ray
structures can be used to annotate unknown density (Long et al.,
2008) (Fig. 3d). Once segmented density chains have been identi-
fied, de novo building or chain completion can be employed using
interactive software programs such as Coot (Emsley et al., 2010) or
ISOLDE (Croll, 2018). Automated approaches such as wARP/ARP
(Langer et al., 2013), Buccaneer (Cowtan, 2006) and the phe-
nix.map_to_model program (Liebschner et al., 2019; Terwilliger
et al., 2018a) have been shown to reliably build large parts of a
model at resolutions below 3.0 Å (Fig. 3e). Furthermore, RosettaES
uses a fragment-based sampling strategy to automatically build
structures de novo into cryo-EM densities (Frenz et al., 2017). At
lower resolutions or in special map areas, these programs may
require repeated manual inspection and intervention until a
faithful model has been built. Finally, individual models need to be
assembled to present the macromolecular structure of the map,
either by another fitting step of multiple models or by applying
geometric transformations according to the symmetry operators
(Fig. 3f).
5. Atomic model refinement using cryo-EM maps

Built models are further refined using cryo-EM maps with the
aim of generating an atomic structure that best matches the
experimental map. This refinement is driven by an energy function
maximizing the map-to-model correlation, while at the same time
maintaining realistic model features such as bond lengths, bond
angles, torsion and ring geometries, in addition to non-binding van
der Waals and Coulomb interactions (Fig. 4a). For example, at res-
olutions from 3 to 4 Å, atomic positions cannot be directly deter-
mined and prior knowledge of backbone atoms and side-chain
geometries helps in maintaining a realistic all-atom model
consistent within the cryo-EM density. Crystallographic refinement
methods maximize agreement of the model with observed
diffraction intensities using a computational procedure imple-
mented in reciprocal space. Cryo-EM density refinement was
adapted to work similarly, using the structure factors calculated
from the cryo-EM map (Murshudov, 2016). For Fourier space pro-
cedures, all atoms contribute to the matching diffraction in-
tensities, whereas for real space approaches, local density features
drive the refinement. Crystallographic refinement has also been
shown towork in real space (Chapman,1995). A similar approach is
now commonly used in cryo-EMmodel refinement, as the cryo-EM
density provides a real-space target to minimize (Afonine et al.,
2018b). Reciprocal space refinement programs such as refmac5
(Nicholls et al., 2012) as well as real-space refinement approaches
such as phenix.real_space_refine (Afonine et al., 2018b) have been
successfully applied to refine cryo-EM structures. In addition to
coordinate refinement, these procedures also allow the refinement
of the B-factor property of each atom. As they are equivalent to the
squared atomic displacement of refined atoms, they are alterna-
tively termed as atomic displacement parameters (ADP) here to
avoid confusion with the introduced map B-factors. In order to
prevent overfitting at side-chain resolution, ADPs require
restrained refinement over residue or atom groups rather than
individual atoms. Well-estimated ADPs are critical for faithful map
simulation of atomic models.

During the refinement, the improvement in the map-to-model
fit is mostly quantified by correlation measures of a simulated
model map with the experimental map (Afonine et al., 2018a;
Joseph et al., 2017; van Zundert and Bonvin, 2015). In addition, local
cross-correlation plots on a per residue basis can be used to identify
poorly fitted protein regions and, consequently, to improve the
model locally (Fig. 4b top). Further local fit metrics include the Z-
score derived from local cross correlation (Pintilie and Chiu, 2018),
the Segment based Manders’ Overlap Coefficient (SMOC) and
combinations with contour overlap scores (Joseph et al., 2017) all of
which have been used to assess map fits of submitted refined
models in the EMDB model challenge 2016 (Lawson and Chiu,
2018). More recently, a Q-score was introduced as a measure of
resolvability of individual atoms in cryo-EM maps (Pintilie et al.,
2020), which is becoming more relevant as the resolution of
cryo-EM is reaching closer to true atomic resolution. Moreover,
map-to-model FSC curves should be used to report the agreement
between the experimental map and the refined model. The general
aim of the comparison is to demonstrate that the reported reso-
lution derived from the 0.143 half-map FSC threshold matches the
0.5 model-map FSC threshold due to the absence of noise in the
simulated model map (Rosenthal and Henderson, 2003) (Fig. 4b
bottom). The FSC has the advantage over cross-correlation mea-
sures that the curve is independent of the applied amplitude
scaling. Therefore, the FSC-average metric is also used to drive the
refinement of the model within the map (Brown et al., 2015).



Fig. 2. Further map processing of three-dimensional cryo-EM image re-
constructions.
(a) 3D reconstructions obtained from common single-particle software packages are
evaluated for resolution by FSC computation, for the B-factor falloff and, optionally, for
local or directional resolution assessment. Sharpening combined with figure-of-merit
(FOM) weighting is critical for further map interpretation. For visualization, further
improvement in map presentation can be achieved by local resolution filtering, Con-
fidence maps or LAFTER rendering approaches. Local sharpening can be applied using
prior knowledge such as de novo approaches (LocalDeblur), structure connectivity
(phenix.auto_sharpen) or atomic model information (LocScale). (b) Example of TMV
structure (EMD-10129) with a nominal resolution of 1.9 Å, the inner radius region
(90e110) shows over-sharpened and fragmented density after global sharpening. For
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6. Validation of cryo-EM based atomic models

The common risk of any coordinate refinement procedure is that
atomic models can easily be overfitted into noisy features of the
cryo-EM map, due to the large number of free parameters to be
optimized. In the case of crystallographic refinement, cross-
validation using the so-called free R-factor has become standard
practice by excluding random diffraction intensities and subse-
quently using them for independent cross-validation (Brünger,
1992). Such a critical metric is not available for cryo-EM model
refinement due to strong dependence between Fourier compo-
nents in the density maps. Alternatively, high-frequency bands
were put forward to be omitted from the model refinement and
exclusively used for cross-validation (Falkner and Schr€oder, 2013).
Another option was proposed using both half-maps obtained from
the reconstruction procedure. One of the half-maps, the so-called
working map, can be used for refinement and the second half-
map, the testing map, for validation of the refinement (DiMaio
et al., 2013). Overfitting is then evaluated by FSC of the model
map with the working map, which should not exceed the FSC from
the model map with the testing map. This approach can be used to
identify the appropriate balance between the density fit the and the
geometry restraints and prevent serious overfitting during refine-
ment (Hoffmann et al., 2016). It needs to be stated that theworking/
testing half-map strategy is not comparable with the robustness of
the free crystallographic R-factor against overfitting, as remaining
dependencies of noise in both half-maps are present, e.g. due to the
same 3D reference used for image alignment and interpolations of
the image reconstruction.

The quality of the model geometry needs to be routinely
monitored throughout the refinement procedure and should be
reported in the publications. The standard model quality assess-
ment tool is currently MolProbity (Williams et al., 2018) that can
identify steric clashes, residue-based Ramachandran outliers,
rotamer outliers and errors in local contacts, like hydrogen bonds
(Fig. 4c). MolProbity provides model quality statistics and a final
score in the context of expectations of deposited PDB structures,
thereby ranking the refined structure accordingly. In addition,
alternative statistical methods like ProQ3D3 (Uziela et al., 2017),
DOPE (Shen and Sali, 2006) and QMEAN (Benkert et al., 2008) can
help to assess overall protein quality. Tools such as CaBLAM and
DipCheck analyze geometry parameters across the backbone
including adjacent residues are helpful for identifying problematic
parts of the structure. CaBLAM assesses virtual dihedral angles
between successive Ca or C(¼O) atoms (Richardson et al., 2018)
whereas DipCheck analyzes the geometrical space across dipeptide
backbone atoms (Pereira and Lamzin, 2017). The EMRinger score
assesses the backbone fit of the model by matching expected side-
chain rotamers with the density (Wang et al., 2016). All of these
metrics can be useful to validate the refined atomic model in
addition to the commonly used geometry parameters. Finally, it is
important to note that these validation metrics should only be used
as independent quality criteria and must not be included as the
refinement target or fixed to ideal values. For resolutions above 4 Å,
secondary structure elements require special attention and back-
bone dihedral angles often need to be restrained to generate real-
istic structures and avoid overfitting. Such restraints can be
generated with the help of homology models using ProSMART
(Kovalevskiy et al., 2016). This approach is particularly relevant in
structures with large resolution variation, which require additional
restraints in lower resolution regions (Hoffmann et al., 2015).
this flexible loop, density becomes visible by local filtering as well as with the help of
Confidence maps.



Fig. 3. From cryo-EM maps to atomic models.
(a) Common cryo-EM software packages output a 3D reconstruction obtained from electron micrographs. (b) This map requires sharpening in order to elucidate high-resolution
features that can remain hidden (left) (if no sharpening is applied) or become discontinuous (right) (if over-sharpened). (c) Many cryo-EMmaps contain multiple subunits that need
to be identified and segmented. (d) Folds and secondary structure features are then identified. (e) At lower resolutions (15e5 Å), atomic models from a reference structure can be
placed if available as a whole or in parts of the density map. At higher resolutions below 4.5, Å larger side-chains can be identified and built interactively. At resolutions better than
3.0 Å, automated model building can be employed. (f) Finally, complete models are assembled from individual polypeptide chains.
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Fig. 4. Atomic model refinement and validation criteria.
(a) The built atomic model is refined within the cryo-EM density while taking into account reference geometries from bonds, bond angles, torsion angle, ring deviations, in addition
to van der Waals and Coulomb interactions. (b) The final fit can be assessed by correlating the simulated map of the atomic model (PDB-3J9E) with the experimental map (EMD-
6240). Correlation of each residue can be used as a local fitting criterion (top). Map-to-model FSCs are used to assess whether the refined atomic model represents the 3D image
reconstruction. For EMD-10129, half-map FSC threshold at 0.143 coincides with model-map FSC cutoff at 0.5 due to the noiseless model map (PDB-6SAE) (bottom). (c) Model
geometry parameters that are not restrained by the refinement are used to assess model quality. Clash score, Ramachandran and side-chain rotamer values (left) are compared with
the expected PDB statistics of other structures determined at the same resolution (right) and can be used to identify outliers. Other validation metrics include CaBLAM outliers and
cis-peptides.
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7. Differences between X-ray crystallographic and cryo-EM
maps

The visual and qualitative interpretation of X-ray crystallo-
graphic and cryo-EM maps is guided by very similar principles. As
cryo-EM maps represent the molecular Coulomb potential as
opposed to the electron density of X-ray crystallographic maps,
some molecular map features, however, can differ in their
appearance. One apparent difference between both density types is
the cryo-EM density weakness of negatively charged residues
(Allegretti et al., 2014; Bartesaghi et al., 2014; Fromm et al., 2015).
Two principal reasons have been discussed to explain these ob-
servations. First, carboxyl side chains of aspartic and glutamic acid
are radiation-sensitive leaving groups that can be ejected in a
process initiated by radical chemistry in analogy to X-ray crystal-
lographic observations (Weik et al., 2000). These radiation damage
effects can be followed over time by frame-based image acquisition
for X-ray crystallography as well as cryo-EM (Fromm et al., 2015).
They are largely defined by the employed electron fluence, which is
several times higher in cryo-EM image acquisitions at 20 e�/Å2

when compared with exposures typically used in X-ray crystal-
lography (Henderson, 1990). Second, as electron scattering is
dependent on the atomic Coulomb potential, cryo-EM maps offer
the principal possibility to visualize different charge states and
charge distributions (Kühlbrandt et al., 1994; Mitsuoka et al., 1999).
The use of electron scattering factors in the refinement has been
shown to lead to small improvements in model statistics (Yonekura
and Maki-Yonekura, 2016) and is already used in most model
refinement packages. More recent reports have proposed the pos-
sibility that negatively charged atoms possess a modified electron
scattering potential and thereby giving rise to negative density
(Hryc et al., 2017; Yonekura et al., 2018). The most pronounced
differences include the density of charged ions vs. neutral atoms
(Wang and Wang, 2017; Wang, 2017a, 2017b; 2017c; Wang and
Moore, 2017). Ultimately, maps at very high resolution with true
atomic positioning and measured scattering potential could be
used to develop more comprehensive quantitative models for the
observed side-chain specific density properties. In contrast to
structure determination by X-ray crystallography when initial
phases are improving the map over time, cryo-EM maps remain a
constant target during cycles of model building and refinement.
One exception to this work-flow is the local sharpening procedure
LocScale (Jakobi et al., 2017). This procedure obtains radially aver-
aged amplitudes from the model map and scales them to the
experimental map locally. The amplitude falloff is largely defined
by estimated ADPs (atomic B-factors) of this particular map region.
After LocScale application, map parts with higher ADP values that
used to show fragmented density due to over-sharpening can
become locally blurred and will be suitable for extended model
building. In the future, further approaches can be envisioned, which
will make use of better atomic models for improvement of the 3D
image reconstruction.

Cryo-EM based atomic model building and refinement is to a
large extent adapted from existing X-ray crystallographic routines.
As a consequence, the principal process of evaluating and repre-
senting models from cryo-EM maps is identical to structures
derived from X-ray crystallography. Alternative approaches of
representing multiple models for a given density as implemented
routinely in NMR have also been proposed for cryo-EM maps to
represent and assess local variability in the determined structures
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(Farabella et al., 2015; Herzik et al., 2019a; Pintilie et al., 2016;
Sachse et al., 2007). Ensemble refinement has also been applied to
X-ray crystallographic structure refinement (Levin et al., 2007),
although it is generally not recommended due to the danger of
structure overfitting with increased number of parameters to be
refined. One important difference to X-ray structure determination,
however, is that the cryo-EM experiment is increasingly delivering
map ensembles from a single sample due to more sophisticated 3D
classification procedures (Dashti et al., 2014; Nakane et al., 2018;
Zhang et al., 2019). At the moment, all of these algorithms focus on
generating ensembles of 3D density maps from the particle images.
Generating related atomic models from multiple 3D densities is a
logical continuation and has been successfully demonstrated before
(Fischer et al., 2016). Given the latest resolution improvements in
separating 3D density ensembles, large benefits can be envisioned
from further development. These ensembles can reflect differences
in conformation or presence and absence of binding partners
revealing transition states critical for biological function. In prin-
ciple, the prior knowledge of existing structures and connectivity
within a map imposes clear restraints on the allowed movements
and the associated conformational freedom. At the same time, the
increased degrees of freedom and parameter space potentially
open severe problems of overfitting. The foreseen challenge in the
development will be balancing these two contributions to avoid
overfitting in the refinement process. Once accomplished they will
be able to provide first-hand experimental structures describing
the principle mechanics of biological macromolecules in newways.
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