000878279 001__ 878279
000878279 005__ 20210130005530.0
000878279 0247_ $$2doi$$a10.1002/adfm.201808270
000878279 0247_ $$2ISSN$$a1057-9257
000878279 0247_ $$2ISSN$$a1099-0712
000878279 0247_ $$2ISSN$$a1616-301X
000878279 0247_ $$2ISSN$$a1616-3028
000878279 0247_ $$2Handle$$a2128/25442
000878279 0247_ $$2altmetric$$aaltmetric:55302175
000878279 0247_ $$2WOS$$aWOS:000535358900008
000878279 037__ $$aFZJ-2020-02742
000878279 041__ $$aEnglish
000878279 082__ $$a530
000878279 1001_ $$0P:(DE-HGF)0$$aKeunecke, Marius$$b0
000878279 245__ $$aHigh‐ T C Interfacial Ferromagnetism in SrMnO 3 /LaMnO 3 Superlattices
000878279 260__ $$aWeinheim$$bWiley-VCH$$c2020
000878279 3367_ $$2DRIVER$$aarticle
000878279 3367_ $$2DataCite$$aOutput Types/Journal article
000878279 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596691046_32287
000878279 3367_ $$2BibTeX$$aARTICLE
000878279 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878279 3367_ $$00$$2EndNote$$aJournal Article
000878279 520__ $$aHeterostructures of strongly correlated oxides demonstrate various intriguing and potentially useful interfacial phenomena. LaMnO3/SrMnO3 superlattices are presented showcasing a new high‐temperature ferromagnetic phase with Curie temperature, T C ≈360 K, caused by electron transfer from the surface of the LaMnO3 donor layer into the neighboring SrMnO3 acceptor layer. As a result, the SrMnO3 (top)/LaMnO3 (bottom) interface shows an enhancement of the magnetization as depth‐profiled by polarized neutron reflectometry. The length scale of charge transfer, λTF ≈2 unit cells, is obtained from in situ growth monitoring by optical ellipsometry, supported by optical simulations, and further confirmed by high resolution electron microscopy and spectroscopy. A model of the inhomogeneous distribution of electron density in LaMnO3/SrMnO3 layers along the growth direction is concluded to account for a complex interplay between ferromagnetic and antiferromagnetic layers in superlattices.
000878279 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878279 588__ $$aDataset connected to CrossRef
000878279 7001_ $$0P:(DE-HGF)0$$aLyzwa, Fryderyk$$b1
000878279 7001_ $$0P:(DE-HGF)0$$aSchwarzbach, Danny$$b2
000878279 7001_ $$0P:(DE-HGF)0$$aRoddatis, Vladimir$$b3
000878279 7001_ $$0P:(DE-HGF)0$$aGauquelin, Nicolas$$b4
000878279 7001_ $$0P:(DE-HGF)0$$aMüller‐Caspary, Knut$$b5
000878279 7001_ $$0P:(DE-HGF)0$$aVerbeeck, Johann$$b6
000878279 7001_ $$0P:(DE-HGF)0$$aCallori, Sara J.$$b7
000878279 7001_ $$0P:(DE-HGF)0$$aKlose, Frank$$b8
000878279 7001_ $$0P:(DE-HGF)0$$aJungbauer, Markus$$b9
000878279 7001_ $$00000-0003-4288-6893$$aMoshnyaga, Vasily$$b10$$eCorresponding author
000878279 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201808270$$gVol. 30, no. 18, p. 1808270 -$$n18$$p1808270$$tAdvanced functional materials$$v30$$x1616-3028$$y2020
000878279 8564_ $$uhttps://juser.fz-juelich.de/record/878279/files/adfm.201808270.pdf
000878279 8564_ $$uhttps://juser.fz-juelich.de/record/878279/files/162108.pdf$$yPublished on 2019-02-10. Available in OpenAccess from 2020-02-10.
000878279 8564_ $$uhttps://juser.fz-juelich.de/record/878279/files/adfm.201808270.pdf?subformat=pdfa$$xpdfa
000878279 8564_ $$uhttps://juser.fz-juelich.de/record/878279/files/162108.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-02-10. Available in OpenAccess from 2020-02-10.
000878279 909CO $$ooai:juser.fz-juelich.de:878279$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
000878279 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878279 9141_ $$y2020
000878279 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2018$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2018$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878279 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878279 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000878279 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878279 920__ $$lyes
000878279 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878279 980__ $$ajournal
000878279 980__ $$aVDB
000878279 980__ $$aUNRESTRICTED
000878279 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878279 9801_ $$aFullTexts