001     878279
005     20210130005530.0
024 7 _ |a 10.1002/adfm.201808270
|2 doi
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a 2128/25442
|2 Handle
024 7 _ |a altmetric:55302175
|2 altmetric
024 7 _ |a WOS:000535358900008
|2 WOS
037 _ _ |a FZJ-2020-02742
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Keunecke, Marius
|0 P:(DE-HGF)0
|b 0
245 _ _ |a High‐ T C Interfacial Ferromagnetism in SrMnO 3 /LaMnO 3 Superlattices
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1596691046_32287
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Heterostructures of strongly correlated oxides demonstrate various intriguing and potentially useful interfacial phenomena. LaMnO3/SrMnO3 superlattices are presented showcasing a new high‐temperature ferromagnetic phase with Curie temperature, T C ≈360 K, caused by electron transfer from the surface of the LaMnO3 donor layer into the neighboring SrMnO3 acceptor layer. As a result, the SrMnO3 (top)/LaMnO3 (bottom) interface shows an enhancement of the magnetization as depth‐profiled by polarized neutron reflectometry. The length scale of charge transfer, λTF ≈2 unit cells, is obtained from in situ growth monitoring by optical ellipsometry, supported by optical simulations, and further confirmed by high resolution electron microscopy and spectroscopy. A model of the inhomogeneous distribution of electron density in LaMnO3/SrMnO3 layers along the growth direction is concluded to account for a complex interplay between ferromagnetic and antiferromagnetic layers in superlattices.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lyzwa, Fryderyk
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schwarzbach, Danny
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Roddatis, Vladimir
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gauquelin, Nicolas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Müller‐Caspary, Knut
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Verbeeck, Johann
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Callori, Sara J.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Klose, Frank
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Jungbauer, Markus
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Moshnyaga, Vasily
|0 0000-0003-4288-6893
|b 10
|e Corresponding author
773 _ _ |a 10.1002/adfm.201808270
|g Vol. 30, no. 18, p. 1808270 -
|0 PERI:(DE-600)2039420-2
|n 18
|p 1808270
|t Advanced functional materials
|v 30
|y 2020
|x 1616-3028
856 4 _ |u https://juser.fz-juelich.de/record/878279/files/adfm.201808270.pdf
856 4 _ |y Published on 2019-02-10. Available in OpenAccess from 2020-02-10.
|u https://juser.fz-juelich.de/record/878279/files/162108.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/878279/files/adfm.201808270.pdf?subformat=pdfa
856 4 _ |y Published on 2019-02-10. Available in OpenAccess from 2020-02-10.
|x pdfa
|u https://juser.fz-juelich.de/record/878279/files/162108.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878279
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-26
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV FUNCT MATER : 2018
|d 2020-02-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2018
|d 2020-02-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21