000878319 001__ 878319
000878319 005__ 20240610121331.0
000878319 0247_ $$2doi$$a10.1002/aenm.201901836
000878319 0247_ $$2ISSN$$a1614-6832
000878319 0247_ $$2ISSN$$a1614-6840
000878319 0247_ $$2Handle$$a2128/25454
000878319 0247_ $$2altmetric$$aaltmetric:64350252
000878319 0247_ $$2WOS$$aWOS:000484080400001
000878319 037__ $$aFZJ-2020-02775
000878319 082__ $$a050
000878319 1001_ $$0P:(DE-HGF)0$$aTang, Peng‐Yi$$b0
000878319 245__ $$aBoosting Photoelectrochemical Water Oxidation of Hematite in Acidic Electrolytes by Surface State Modification5
000878319 260__ $$aWeinheim$$bWiley-VCH$$c2019
000878319 3367_ $$2DRIVER$$aarticle
000878319 3367_ $$2DataCite$$aOutput Types/Journal article
000878319 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596721006_32467
000878319 3367_ $$2BibTeX$$aARTICLE
000878319 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878319 3367_ $$00$$2EndNote$$aJournal Article
000878319 520__ $$aState‐of‐the‐art water‐oxidation catalysts (WOCs) in acidic electrolytes usually contain expensive noble metals such as ruthenium and iridium. However, they too expensive to be implemented broadly in semiconductor photoanodes for photoelectrochemical (PEC) water splitting devices. Here, an Earth‐abundant CoFe Prussian blue analogue (CoFe‐PBA) is incorporated with core–shell Fe2O3/Fe2TiO5 type II heterojunction nanowires as composite photoanodes for PEC water splitting. Those deliver a high photocurrent of 1.25 mA cm−2 at 1.23 V versus reversible reference electrode in acidic electrolytes (pH = 1). The enhancement arises from the synergic behavior between the successive decoration of the hematite surface with nanolayers of Fe2TiO5 and then, CoFe‐PBA. The underlying physical mechanism of performance enhancement through formation of the Fe2O3/Fe2TiO5/CoFe‐PBA heterostructure reveals that the surface states’ electronic levels of hematite are modified such that an interfacial charge transfer becomes kinetically favorable. These findings open new pathways for the future design of cheap and efficient hematite‐based photoanodes in acidic electrolytes.
000878319 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878319 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
000878319 588__ $$aDataset connected to CrossRef
000878319 7001_ $$0P:(DE-HGF)0$$aHan, Li‐Juan$$b1
000878319 7001_ $$0P:(DE-HGF)0$$aHegner, Franziska Simone$$b2
000878319 7001_ $$0P:(DE-Juel1)151296$$aPaciok, Paul$$b3$$ufzj
000878319 7001_ $$0P:(DE-HGF)0$$aBiset‐Peiró, Martí$$b4
000878319 7001_ $$0P:(DE-HGF)0$$aDu, Hong‐Chu$$b5
000878319 7001_ $$0P:(DE-HGF)0$$aWei, Xian‐Kui$$b6
000878319 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b7$$ufzj
000878319 7001_ $$0P:(DE-HGF)0$$aXie, Hai‐Bing$$b8
000878319 7001_ $$0P:(DE-HGF)0$$aShi, Qin$$b9
000878319 7001_ $$0P:(DE-HGF)0$$aAndreu, Teresa$$b10
000878319 7001_ $$0P:(DE-HGF)0$$aLira‐Cantú, Mónica$$b11
000878319 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b12$$ufzj
000878319 7001_ $$0P:(DE-HGF)0$$aDunin‐Borkowski, Rafal E.$$b13
000878319 7001_ $$0P:(DE-HGF)0$$aLópez, Núria$$b14
000878319 7001_ $$0P:(DE-HGF)0$$aGalán‐Mascarós, José Ramón$$b15
000878319 7001_ $$0P:(DE-HGF)0$$aMorante, Joan Ramon$$b16
000878319 7001_ $$00000-0002-0695-1726$$aArbiol, Jordi$$b17
000878319 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.201901836$$gVol. 9, no. 34, p. 1901836 -$$n34$$p1901836 -$$tAdvanced energy materials$$v9$$x1614-6840$$y2019
000878319 8564_ $$uhttps://juser.fz-juelich.de/record/878319/files/boophowat_a2019v9n34.pdf$$yOpenAccess
000878319 8564_ $$uhttps://juser.fz-juelich.de/record/878319/files/boophowat_a2019v9n34.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878319 909CO $$ooai:juser.fz-juelich.de:878319$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151296$$aForschungszentrum Jülich$$b3$$kFZJ
000878319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
000878319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b6$$kFZJ
000878319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b7$$kFZJ
000878319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b12$$kFZJ
000878319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b13$$kFZJ
000878319 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878319 9141_ $$y2020
000878319 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000878319 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000878319 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000878319 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000878319 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV ENERGY MATER : 2018$$d2020-02-26
000878319 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000878319 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878319 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878319 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000878319 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878319 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000878319 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2018$$d2020-02-26
000878319 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000878319 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878319 920__ $$lyes
000878319 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878319 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000878319 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x2
000878319 9801_ $$aFullTexts
000878319 980__ $$ajournal
000878319 980__ $$aVDB
000878319 980__ $$aUNRESTRICTED
000878319 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878319 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000878319 980__ $$aI:(DE-Juel1)PGI-5-20110106
000878319 981__ $$aI:(DE-Juel1)ER-C-1-20170209