Hauptseite > Publikationsdatenbank > Boosting Photoelectrochemical Water Oxidation of Hematite in Acidic Electrolytes by Surface State Modification5 > print |
001 | 878319 | ||
005 | 20240610121331.0 | ||
024 | 7 | _ | |a 10.1002/aenm.201901836 |2 doi |
024 | 7 | _ | |a 1614-6832 |2 ISSN |
024 | 7 | _ | |a 1614-6840 |2 ISSN |
024 | 7 | _ | |a 2128/25454 |2 Handle |
024 | 7 | _ | |a altmetric:64350252 |2 altmetric |
024 | 7 | _ | |a WOS:000484080400001 |2 WOS |
037 | _ | _ | |a FZJ-2020-02775 |
082 | _ | _ | |a 050 |
100 | 1 | _ | |a Tang, Peng‐Yi |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Boosting Photoelectrochemical Water Oxidation of Hematite in Acidic Electrolytes by Surface State Modification5 |
260 | _ | _ | |a Weinheim |c 2019 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1596721006_32467 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a State‐of‐the‐art water‐oxidation catalysts (WOCs) in acidic electrolytes usually contain expensive noble metals such as ruthenium and iridium. However, they too expensive to be implemented broadly in semiconductor photoanodes for photoelectrochemical (PEC) water splitting devices. Here, an Earth‐abundant CoFe Prussian blue analogue (CoFe‐PBA) is incorporated with core–shell Fe2O3/Fe2TiO5 type II heterojunction nanowires as composite photoanodes for PEC water splitting. Those deliver a high photocurrent of 1.25 mA cm−2 at 1.23 V versus reversible reference electrode in acidic electrolytes (pH = 1). The enhancement arises from the synergic behavior between the successive decoration of the hematite surface with nanolayers of Fe2TiO5 and then, CoFe‐PBA. The underlying physical mechanism of performance enhancement through formation of the Fe2O3/Fe2TiO5/CoFe‐PBA heterostructure reveals that the surface states’ electronic levels of hematite are modified such that an interfacial charge transfer becomes kinetically favorable. These findings open new pathways for the future design of cheap and efficient hematite‐based photoanodes in acidic electrolytes. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |x 0 |f POF III |
536 | _ | _ | |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811) |0 G:(GEPRIS)167917811 |c 167917811 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Han, Li‐Juan |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Hegner, Franziska Simone |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Paciok, Paul |0 P:(DE-Juel1)151296 |b 3 |u fzj |
700 | 1 | _ | |a Biset‐Peiró, Martí |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Du, Hong‐Chu |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Wei, Xian‐Kui |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Jin, Lei |0 P:(DE-Juel1)145711 |b 7 |u fzj |
700 | 1 | _ | |a Xie, Hai‐Bing |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Shi, Qin |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Andreu, Teresa |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Lira‐Cantú, Mónica |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Heggen, Marc |0 P:(DE-Juel1)130695 |b 12 |u fzj |
700 | 1 | _ | |a Dunin‐Borkowski, Rafal E. |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a López, Núria |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Galán‐Mascarós, José Ramón |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Morante, Joan Ramon |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Arbiol, Jordi |0 0000-0002-0695-1726 |b 17 |
773 | _ | _ | |a 10.1002/aenm.201901836 |g Vol. 9, no. 34, p. 1901836 - |0 PERI:(DE-600)2594556-7 |n 34 |p 1901836 - |t Advanced energy materials |v 9 |y 2019 |x 1614-6840 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/878319/files/boophowat_a2019v9n34.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/878319/files/boophowat_a2019v9n34.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:878319 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)151296 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)145711 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)130695 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-02-26 |
915 | _ | _ | |a IF >= 20 |0 StatID:(DE-HGF)9920 |2 StatID |b ADV ENERGY MATER : 2018 |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-02-26 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-02-26 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-02-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-02-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-02-26 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV ENERGY MATER : 2018 |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-02-26 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-2-20170209 |k ER-C-2 |l Materialwissenschaft u. Werkstofftechnik |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 2 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a I:(DE-Juel1)ER-C-2-20170209 |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|