000878325 001__ 878325
000878325 005__ 20240610121222.0
000878325 0247_ $$2doi$$a10.1080/21663831.2019.1572663
000878325 0247_ $$2Handle$$a2128/25462
000878325 0247_ $$2WOS$$aWOS:000463803200002
000878325 037__ $$aFZJ-2020-02777
000878325 082__ $$a670
000878325 1001_ $$0P:(DE-HGF)0$$aPradeep, K. G.$$b0$$eCorresponding author
000878325 245__ $$aNano-scale Si segregation and precipitation in Cr 2 Al(Si)C MAX phase coatings impeding grain growth during oxidation
000878325 260__ $$aLondon [u.a.]$$bTaylor & Francis$$c2019
000878325 3367_ $$2DRIVER$$aarticle
000878325 3367_ $$2DataCite$$aOutput Types/Journal article
000878325 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597034855_984
000878325 3367_ $$2BibTeX$$aARTICLE
000878325 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878325 3367_ $$00$$2EndNote$$aJournal Article
000878325 520__ $$aWe recently reported that the columnar grain width of Cr2AlC MAX phase coatings increases during oxidation (4 h at 1120°C) by 80%, while for 0.7 at.% Si additions to Cr2AlC, coarsening of only 12% was observed. Here, we use nm scale compositional and microstructural investigations to identify significant differences between Cr2AlC and Cr2Al(Si)C. In particular, needle-shaped precipitates coarsen into globular Cr3Si precipitates upon oxidation in the Si-containing MAX phase. We infer that the presence of these precipitates, which are located predominantly along grain boundaries in the MAX phase, retards coarsening during oxidation by Zener pinning.
000878325 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878325 588__ $$aDataset connected to CrossRef
000878325 7001_ $$0P:(DE-HGF)0$$aChang, K.$$b1
000878325 7001_ $$0P:(DE-Juel1)144926$$aKovacs, Andras$$b2
000878325 7001_ $$0P:(DE-HGF)0$$aSen, S.$$b3
000878325 7001_ $$0P:(DE-HGF)0$$aMarshal, A.$$b4
000878325 7001_ $$0P:(DE-HGF)0$$ade Kloe, René$$b5
000878325 7001_ $$0P:(DE-HGF)0$$aDunin-Borkowski, R. E.$$b6
000878325 7001_ $$0P:(DE-HGF)0$$aSchneider, J. M.$$b7
000878325 773__ $$0PERI:(DE-600)2703730-7$$a10.1080/21663831.2019.1572663$$gVol. 7, no. 5, p. 180 - 187$$n5$$p180 - 187$$tMaterials Research Letters$$v7$$x2166-3831$$y2019
000878325 8564_ $$uhttps://juser.fz-juelich.de/record/878325/files/Nano%20scale%20Si%20segregation%20and%20precipitation%20in%20Cr2Al%20Si%20C%20MAX%20phase%20coatings%20impeding%20grain%20growth%20during%20oxidation.pdf$$yOpenAccess
000878325 8564_ $$uhttps://juser.fz-juelich.de/record/878325/files/Nano%20scale%20Si%20segregation%20and%20precipitation%20in%20Cr2Al%20Si%20C%20MAX%20phase%20coatings%20impeding%20grain%20growth%20during%20oxidation.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878325 909CO $$ooai:juser.fz-juelich.de:878325$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878325 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b2$$kFZJ
000878325 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b6$$kFZJ
000878325 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878325 9141_ $$y2020
000878325 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-20
000878325 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-20
000878325 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2019-12-20
000878325 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878325 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER RES LETT : 2018$$d2019-12-20
000878325 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMATER RES LETT : 2018$$d2019-12-20
000878325 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-20
000878325 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-20
000878325 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-20
000878325 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2019-12-20
000878325 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-20
000878325 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878325 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2019-12-20
000878325 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2019-12-20
000878325 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2019-12-20
000878325 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-20
000878325 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-20
000878325 920__ $$lyes
000878325 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878325 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000878325 9801_ $$aFullTexts
000878325 980__ $$ajournal
000878325 980__ $$aVDB
000878325 980__ $$aUNRESTRICTED
000878325 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878325 980__ $$aI:(DE-Juel1)PGI-5-20110106
000878325 981__ $$aI:(DE-Juel1)ER-C-1-20170209