000878326 001__ 878326
000878326 005__ 20240610121333.0
000878326 0247_ $$2doi$$a10.1021/acs.chemmater.9b01836
000878326 0247_ $$2ISSN$$a0897-4756
000878326 0247_ $$2ISSN$$a1520-5002
000878326 0247_ $$2Handle$$a2128/25450
000878326 0247_ $$2WOS$$aWOS:000487859200024
000878326 037__ $$aFZJ-2020-02778
000878326 082__ $$a540
000878326 1001_ $$00000-0002-8009-3758$$aMirabello, Giulia$$b0
000878326 245__ $$aUnderstanding the Formation Mechanism of Magnetic Mesocrystals with (Cryo-)Electron Microscopy
000878326 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2019
000878326 3367_ $$2DRIVER$$aarticle
000878326 3367_ $$2DataCite$$aOutput Types/Journal article
000878326 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596703821_32287
000878326 3367_ $$2BibTeX$$aARTICLE
000878326 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878326 3367_ $$00$$2EndNote$$aJournal Article
000878326 520__ $$aMagnetite (Fe3O4) nanoaggregates with a flower-like morphology are considered promising materials in the field of magnetically induced hyperthermia in cancer therapy due to their good heating efficiency at low applied alternating magnetic fields. Although the structure and the magnetic state of such flower-like aggregates have been investigated previously, the mechanism that leads to the hierarchical morphology is still poorly understood. Here, we study the formation mechanism of Fe3O4 aggregates synthesized through the partial oxidation of ferrous hydroxide in the presence of poly(acrylic acid) by using cryogenic electron microscopy. The aggregates are formed through a multistep process involving first the conversion of ferrous hydroxide precursors in ∼5 nm primary particles that aggregate into ∼10 nm primary Fe3O4 crystals that finally arrange into the secondary mesocrystal structure. High-resolution electron tomography is used to show that the Fe3O4 mesocrystals are composed of ∼10 nm subunits, often showing a uniform crystallographic orientation resulting in single-crystal-like diffraction patterns. Furthermore, electron holography reveals that mesocrystals have a single magnetic domain despite polymeric interfaces between subunits being present throughout the mesocrystal. Our findings could be used to design materials with specific properties by modulating the morphology and/or magnetic state that is suitable for biomedical application.
000878326 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878326 588__ $$aDataset connected to CrossRef
000878326 7001_ $$0P:(DE-HGF)0$$aKeizer, Arthur$$b1
000878326 7001_ $$0P:(DE-HGF)0$$aBomans, Paul H. H.$$b2
000878326 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b3
000878326 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b4
000878326 7001_ $$00000-0002-8956-195X$$aSommerdijk, Nico A. J. M.$$b5
000878326 7001_ $$00000-0003-4582-0064$$aFriedrich, Heiner$$b6$$eCorresponding author
000878326 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.9b01836$$gVol. 31, no. 18, p. 7320 - 7328$$n18$$p7320 - 7328$$tChemistry of materials$$v31$$x1520-5002$$y2019
000878326 8564_ $$uhttps://juser.fz-juelich.de/record/878326/files/acs.chemmater.9b01836.pdf$$yOpenAccess
000878326 8564_ $$uhttps://juser.fz-juelich.de/record/878326/files/acs.chemmater.9b01836.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878326 909CO $$ooai:juser.fz-juelich.de:878326$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878326 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b3$$kFZJ
000878326 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
000878326 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878326 9141_ $$y2020
000878326 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11
000878326 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11
000878326 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-11
000878326 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-11
000878326 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000878326 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2018$$d2020-01-11
000878326 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bCHEM MATER : 2018$$d2020-01-11
000878326 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11
000878326 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-11
000878326 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11
000878326 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878326 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-11
000878326 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-11
000878326 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11
000878326 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-11$$wger
000878326 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11
000878326 920__ $$lyes
000878326 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878326 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000878326 9801_ $$aFullTexts
000878326 980__ $$ajournal
000878326 980__ $$aVDB
000878326 980__ $$aUNRESTRICTED
000878326 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878326 980__ $$aI:(DE-Juel1)PGI-5-20110106
000878326 981__ $$aI:(DE-Juel1)ER-C-1-20170209