000878327 001__ 878327
000878327 005__ 20230505130534.0
000878327 0247_ $$2doi$$a10.1002/admi.201901265
000878327 0247_ $$2Handle$$a2128/25633
000878327 0247_ $$2WOS$$aWOS:000503847100001
000878327 037__ $$aFZJ-2020-02779
000878327 082__ $$a600
000878327 1001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b0
000878327 245__ $$aAtomic Scale Understanding of the Epitaxy of Perovskite Oxides on Flexible Mica Substrate
000878327 260__ $$aWeinheim$$bWiley-VCH$$c2020
000878327 3367_ $$2DRIVER$$aarticle
000878327 3367_ $$2DataCite$$aOutput Types/Journal article
000878327 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599741524_22270
000878327 3367_ $$2BibTeX$$aARTICLE
000878327 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878327 3367_ $$00$$2EndNote$$aJournal Article
000878327 520__ $$aThe excellent functionalities of perovskite oxides and the growing demands for flexible devices lead to great interests on epitaxial growth of functional oxide films on flexible mica substrates. Understanding the film epitaxy on the substrate with a very different crystal structure is a key issue for the optimization of the film growth and hence properties. Such understanding largely depends on knowing the atomic structure of the interfaces between the films and the substrates. Here, the interface between the epitaxial films of SrTiO3 on the fluorophlogopite mica substrate is studied in detail. Two types of interfaces, clean or with secondary phase, exist in this system, leading to two types of crystallographic orientation relationships. Atomic‐resolution scanning transmission electron microscopy images reveal that at the clean interface the (111) Sr–O3 atomic plane of SrTiO3 interacts with the (001) (SiAl)2–O3 plane of mica. This interface structure and thus the epitaxy of the film are understood in light of the strong similarity of the oxygen sublattices in these two atomic planes. First‐principles calculations demonstrate strong bonding of the atoms at the interface, which is also corroborated by the observation of misfit dislocations at the interfaces.
000878327 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878327 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
000878327 588__ $$aDataset connected to CrossRef
000878327 7001_ $$0P:(DE-HGF)0$$aDai, Yanzhu$$b1
000878327 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b2
000878327 7001_ $$0P:(DE-Juel1)173033$$aLiu, Ming$$b3
000878327 7001_ $$0P:(DE-HGF)0$$aWu, Jingying$$b4
000878327 7001_ $$0P:(DE-Juel1)179270$$aZhang, Yong$$b5
000878327 7001_ $$0P:(DE-HGF)0$$aLiang, Zhongshuai$$b6
000878327 7001_ $$0P:(DE-HGF)0$$aRaza, Subhan$$b7
000878327 7001_ $$0P:(DE-HGF)0$$aWang, Dawei$$b8
000878327 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun‐Lin$$b9$$eCorresponding author
000878327 773__ $$0PERI:(DE-600)2750376-8$$a10.1002/admi.201901265$$gVol. 7, no. 2, p. 1901265 -$$n2$$p1901265 -$$tAdvanced materials interfaces$$v7$$x2196-7350$$y2020
000878327 8564_ $$uhttps://juser.fz-juelich.de/record/878327/files/Perovskite%20on%20Mica.pdf$$yPublished on 2020-01-23. Available in OpenAccess from 2021-01-23.
000878327 8767_ $$92020-11-02$$d2020-12-14$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$padmi.201901265
000878327 909CO $$ooai:juser.fz-juelich.de:878327$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000878327 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b2$$kFZJ
000878327 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173033$$aForschungszentrum Jülich$$b3$$kFZJ
000878327 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b9$$kFZJ
000878327 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878327 9141_ $$y2020
000878327 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000878327 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000878327 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878327 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER INTERFACES : 2018$$d2020-02-26
000878327 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878327 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878327 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000878327 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000878327 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000878327 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000878327 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878327 920__ $$lyes
000878327 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878327 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000878327 9801_ $$aFullTexts
000878327 980__ $$ajournal
000878327 980__ $$aVDB
000878327 980__ $$aUNRESTRICTED
000878327 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878327 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000878327 980__ $$aAPC