001     878327
005     20230505130534.0
024 7 _ |a 10.1002/admi.201901265
|2 doi
024 7 _ |a 2128/25633
|2 Handle
024 7 _ |a WOS:000503847100001
|2 WOS
037 _ _ |a FZJ-2020-02779
082 _ _ |a 600
100 1 _ |a Lu, Lu
|0 P:(DE-Juel1)161232
|b 0
245 _ _ |a Atomic Scale Understanding of the Epitaxy of Perovskite Oxides on Flexible Mica Substrate
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599741524_22270
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The excellent functionalities of perovskite oxides and the growing demands for flexible devices lead to great interests on epitaxial growth of functional oxide films on flexible mica substrates. Understanding the film epitaxy on the substrate with a very different crystal structure is a key issue for the optimization of the film growth and hence properties. Such understanding largely depends on knowing the atomic structure of the interfaces between the films and the substrates. Here, the interface between the epitaxial films of SrTiO3 on the fluorophlogopite mica substrate is studied in detail. Two types of interfaces, clean or with secondary phase, exist in this system, leading to two types of crystallographic orientation relationships. Atomic‐resolution scanning transmission electron microscopy images reveal that at the clean interface the (111) Sr–O3 atomic plane of SrTiO3 interacts with the (001) (SiAl)2–O3 plane of mica. This interface structure and thus the epitaxy of the film are understood in light of the strong similarity of the oxygen sublattices in these two atomic planes. First‐principles calculations demonstrate strong bonding of the atoms at the interface, which is also corroborated by the observation of misfit dislocations at the interfaces.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|x 0
|f POF III
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dai, Yanzhu
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Du, Hongchu
|0 P:(DE-Juel1)145710
|b 2
700 1 _ |a Liu, Ming
|0 P:(DE-Juel1)173033
|b 3
700 1 _ |a Wu, Jingying
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhang, Yong
|0 P:(DE-Juel1)179270
|b 5
700 1 _ |a Liang, Zhongshuai
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Raza, Subhan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wang, Dawei
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Jia, Chun‐Lin
|0 P:(DE-Juel1)130736
|b 9
|e Corresponding author
773 _ _ |a 10.1002/admi.201901265
|g Vol. 7, no. 2, p. 1901265 -
|0 PERI:(DE-600)2750376-8
|n 2
|p 1901265 -
|t Advanced materials interfaces
|v 7
|y 2020
|x 2196-7350
856 4 _ |u https://juser.fz-juelich.de/record/878327/files/Perovskite%20on%20Mica.pdf
|y Published on 2020-01-23. Available in OpenAccess from 2021-01-23.
909 C O |o oai:juser.fz-juelich.de:878327
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173033
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130736
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER INTERFACES : 2018
|d 2020-02-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21