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Abstract: This study aims at illustrating a methodology for predicting monthly scale actual

evapotranspiration losses only based on meteorological data, which mimics the evapotranspiration

intra-annual dynamic. For this purpose, micrometeorological data at the Rollesbroich and Bondone

mountain sites, which are energy-limited systems, and the Sister site, a water-limited system, have been

analyzed. Based on an observed intra-annual transition between dry and wet states governed by

a threshold value of net radiation at each site, an approach that couples meteorological data-based

potential evapotranspiration and actual evapotranspiration relationships has been proposed and

validated against eddy covariance measurements, and further compared to two well-known actual

evapotranspiration prediction models, namely the advection-aridity and the antecedent precipitation

index models. The threshold approach improves the intra-annual actual evapotranspiration variability

prediction, particularly during the wet state periods, and especially concerning the Sister site,

where errors are almost four times smaller compared to the basic models. To further improve the

prediction within the dry state periods, a calibration of the Priestley-Taylor advection coefficient was

necessary. This led to an error reduction of about 80% in the case of the Sister site, of about 30% in

the case of Rollesbroich, and close to 60% in the case of Bondone Mountain. For cases with a lack of

measured data of net radiation and soil heat fluxes, which are essential for the implementation of

the models, an application derived from empirical relationships is discussed. In addition, the study

assessed whether this variation from meteorological data worsened the prediction performances of

the models.

Keywords: evapotranspiration; Priestley-Taylor model; advection-aridity model; antecedent precipitation

index model; Penman equation; oceanic climate; mediterranean climate; eddy covariance fluxes

1. Introduction

Evapotranspiration (ET) is a major component in the water balance of hydrological systems [1,2].

It is a critical parameter in hydrological applications and uncertainties in its assessment propagate

through the hydrological soil–water balance [3]. Distinctions can be made between potential

evapotranspiration (PET) and actual evapotranspiration (AET). Potential evapotranspiration measures

the ability of the atmosphere to remove water from the surface through the processes of evaporation

and transpiration when no limitation or control on water supply exists. Actual evapotranspiration is

the quantity of water actually removed by evaporation and transpiration from a surface if the total

amount of water is limited. Long-term ET measurements are complex and costly to obtain and, even if

some observational data exist, methods to assess ET fluxes such as the eddy covariance approach,

chambers, sap flow systems, and weighing lysimeters, are time-consuming and labour-intensive [4].
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For these reasons, over the last decade, many different approaches for indirect ET modeling have been

proposed and classified according to the mechanisms they mimic.

The methods for PET estimation can be divided into radiation-based, temperature-based,

mass transfer-based, and combination methods [5]. The combination-based methods combine energetic

drivers such as net radiation and air temperature with atmospheric drivers including the vapor pressure

deficit and the wind speed. According to these methods, the energy balance and aerodynamic processes

can be integrated to predict the evaporation fluxes. This class of models has been originally theorized

by Penman who developed the first combination equation to calculate potential evapotranspiration

from an open water surface [6,7]. Various derivations of the Penman equation have taken place over

time, including that suggested by Monteith [8]. The radiation-based approaches mainly depend

on the available energy and neglect the contribution of the aerodynamic component. According to

these approaches, evapotranspiration could be investigated accounting for the variability of radiation.

The Priestley–Taylor (PT) [9] model was among the first to introduce a method attributable to this

group. The temperature-based models consider air temperature as representative of the available

energy for evapotranspiration, so it becomes a key factor able to substantially influence the ET process.

Some of the most well-known models falling within this class are the Hargreaves method [10] and

Thornthwaite method [11]. Mass transfer-based models are based on the concept of eddy motion

transfer of water vapor from an evaporating surface to the atmosphere. These methods are among the

oldest ones and adopt Dalton’s law [12,13].

The methods for calculating AET can be divided into four categories that partially overlap with

the ones proposed for PET assessment. The four classes include the surface energy balance approaches,

combination models, complementary methods, and radiation-based models [14]. The energy balance

approaches consist of solving the energy balance equation at the surface where the evapotranspiration

results from the difference between the net radiation to the surface and losses due to the sensible

heat flux and ground heat flux. The surface energy fluxes could be estimated by coupling in-situ

observations with remote sensing imagery, since the former are generally able to give only localized

estimates and are subject to instrument failure. Among these approaches are the Surface Energy

Balance System (SEBS) [15], the Surface Energy Balance Index (SEBI) [16], and the Surface Energy

Balance Algorithm for Land (SEBAL) [17]. The combination-based methods for AET estimates derive

from the Penman model. Although it was originally used to predict potential evapotranspiration,

adaptations of this model for prediction of actual evapotranspiration have been introduced in the

scientific literature and among these the PM1 and PM2 (Penman-Monteith 1 and Penman-Monteith

2) models [18] or MPM (modified Penman-Monteith) model [19] can be listed. The radiation-based

methods include a number of models resulting from the PT model. It has been modified over time

by several authors who developed advanced formulations of this model in order to translate the

Priestley–Taylor estimates of PET into AET rates. Some adaptations of the Priestley–Taylor model

include the PT-JPL (PT-Jet Propulsion Laboratory) model [20], the MPT (modified-PT) model [21],

and the API (Antecedent Precipitation Index) model [22]. The complementary approaches [23] are

based on the complementary feedback between actual and potential evaporation. According to this

mechanism, when limited water availability dries the ambient air, AET decreases and the energy

that would have been consumed by actual evapotranspiration becomes sensible heat. This warms

the atmospheric boundary layer resulting in an increase in PET. A number of different models based

on the complementary relationship (CR) have been developed, including the advection-aridity (AA)

model [24–26], the Granger and Gray (GG) model [27,28], the CRAE model [29,30], and the modified

advection-aridity (MAA) model [31,32].

The change in evapotranspiration rates is a result of the limited energy and water availability

conditions of the considered areas [33–35] since, as said above, actual ET is governed by the

amount of available energy while potential ET occurs when the supply of water for this process

is non-limiting. Under the Budyko framework, AET is dominated by either precipitation (P) or

potential evapotranspiration (PET). AET rates approach precipitation values in the case of a dry
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climate (i.e., limited water availability conditions), and potential evapotranspiration values are instead

similar to precipitation values in the case of a wet climate (i.e., energy-limited conditions). Beyond

a long-term characterization, the dry and wet climate conditions can also alternate within the year,

resulting in intra-annual ET variability. However, in many situations, the transition between water- and

energy-limited conditions is not clear, and there is still a need in the relevant literature to find feasible

ways to define the water and energy states in order to capture and properly model the dynamics

of evapotranspiration [36]. As water- and energy-limited systems respond differently to climate

change, the identification of the transitioning mechanisms is also important to reveal the dynamics of a

catchment in response to climate variability [37,38]. Additionally, it should be taken into account that

the mechanism of ET variability is quite complex, in particular when the systems are water-limited

and, in these cases, particular attention should be payed to the hydrological prediction [35].

The current and recent past specific literature is rich in a large number of approaches which

aim at finding the most appropriate method for simulating evapotranspiration fluxes, by comparing

predictions from PET and AET models with values of evapotranspiration losses measured from

micrometeorological stations. The overall results of the comparative studies, regardless of the number

of observational sites (in some instances very large), suggested that there is not a single approach able

to outperform other modeling methods for a particular biome [14,20,39,40]).

Within this context, three datasets of eddy covariance observations at the experimental sites

of Rollesbroich (Germany), Sister (Oregon), and Bondone mountain (Italy) have been collected and

investigated with the aim to provide an effective approach for the prediction of the intra-annual ET

variability through the use of different model to represent different periods of the year (wet and dry

state periods) without claiming to find very general rules for specific biomes for the ET assessment.

The experimental sites, belonging to the TERENO (http://teodoor.icg.kfa-juelich.de/overview-en)

and FLUXNET (http://fluxnet.fluxdata.org/) global platforms, feature different climate conditions

(temperate Oceanic and Mediterranean) and vegetation covers (grassland and forest), and they result

in systems with different limiting factors (energy-limited and water-limited systems). In a first step,

a comparison between potential evapotranspiration (modelled by using Penman equation) and actual

evapotranspiration, indirectly derived by eddy covariance data, has been performed for the case studies

in order to detect when the one approaches the other and, consequently, to characterize the intra-annual

ET dynamics. The net radiation has been identified as the meteorological variable able to predict

the transition between dry and wet periods and between dominant evapotranspiration mechanisms

(AET and PET). In a second step, also based on the findings related to the transition mechanism between

potential and actual evapotranspiration, a monthly scale assessment of meteorological data-based

models to predict ET has been proposed. Penman formulation has been considered for the assessment

of potential evapotranspiration, while the AA and API models have been selected among actual

evapotranspiration approaches. The choice of these models has been driven by a number of reasons,

among which are the low computational effort in their application, the use of only meteorological data

as input variables, the reliability in prediction, and the consolidated use in the scientific literature.

The AA and the API methods have been evaluated and compared to a third proposed approach,

named a threshold approach, which couples the AET and PET modelling, according to the seasonal ET

dynamics. In addition, a calibration of the AET models has also been reported in order to improve

the prediction during the dry periods. The calibration doesn’t aim at offering the possibility for a

modelling approach generalization, since the present work is not focused on finding a very general

rules to be applied for one or the other specific biome, but it seeks to improve the reliability of the

seasonal evapotranspiration modelling. Finally, the impact on the threshold model performances of

the use of empirical relationships to derive net radiation and soil heat fluxes, if not measured in situ,

has been tested.

In summary, taking advantage of a good quality dataset, the current research aims are as follows:
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(i) the characterization of the actual evapotranspiration dynamic at the seasonal scale for both energy

and water limited systems, by illustrating a methodology able to identify dry (water-limited) and

wet (energy-limited) states transition only based on meteorological data;

(ii) explain how embedding the switching between dry and wet dominant states into empirical actual

evapotranspiration models could lead to an improvement in the wet periods’ prediction of actual

evapotranspiration, especially in the case of water availability limited sites.

(iii) the assessment of the model errors due to the use of empirically-estimated input variables.

2. Materials and Methods

2.1. Sites and Data Description

The site “us-me2” (doi:10.18140/FLX/1440079) (Figure 1a) is located near Sister in Central Oregon

(4.4523◦ N, 121.5574◦ W). The climate is Mediterranean with mean annual precipitation and air

temperature, respectively, of 478 mm and 6.9 ◦C. The observation period used for the analysis ranges

from November 2006 to January 2010. The land biome is almost exclusively composed of ponderosa

pine trees (Pinus ponderosa Doug. Ex P. Laws) with a few scattered incense cedars (Calocedrus decurrens

Florin). Soils at the site are sandy (69%/24%/7% sand/silt/clay at 0–0.2 m depth and 66%/27%/7%

at 0.2–0.5 m depth, and 54%/35%/11% at 0.5–1.0 m depth). According to the literature, the rooting

depth (RD) for this king of tree is about 1.2 m while the available water storage capacity (AWSC) of

predominantly sandy soil is 83 mm/m [41], resulting in a soil water storage (SWS) of 99.6 mm. Within the

site, eddy-covariance measurements have been collected using a three-dimensional sonic anemometer

and an open-path infrared gas analyzer, additional measurements include atmospheric temperature,

relative humidity, and precipitation. The data are collected above the canopy at the towertop level of 33

meters. A more detailed description of the site, instrumentation, data collection and prediction of the

flux footprint can be found in [42].The grassland test site “de-rur” (doi:10.18140/FLX/1440215) is located

in Rollesbroich, Western Germany (Figure 1b), in the low mountain range of the Eifel region (50.6219◦

N, 6.3041◦ E). The climate is Oceanic and during the observation period, April 2012 to July 2016, annual

mean precipitation and air temperature are approximately 930 mm and 8.4 ◦C. The vegetation cover is

grassland including meadow foxtail (Alopecurus pratensis), perennial rye grass (Lolium perenne), rough

meadow grass (Poa trivialis), and common sorrel (Rumex acetosa). Soils are dominated by (stagnic)

Cambisols and Stagnosols on Devonian shales with occasional sandstone inclusions that are covered

by a periglacial solifluction clay-silt layer. The literature [41,43] suggests a rooting depth of 0.456 m

and an available water storage capacity of 200 mm/m for a SWS of 91.2 mm. Within the site, an eddy

covariance tower with a sonic anemometer and an infrared gas analyzer, has been installed since 2011

and latent and sensible heat fluxes have been obtained by the EC technique. The data are collected

at 2.6 m above the surface. The EC footprint varies strongly over time as shown in [44]. A more

detailed description of the site and the measurement facilities is provided in [45]. The site “it-mbo”

(doi:10.18140/FLX/1440170) (Figure 1c) is located near Trento, northern Italy (46.01468◦ N, 11.04583◦ E).

The site is featured by Oceanic climate with mean annual precipitation of 864 mm and a mean air

temperature of 5.1 ◦C. The period of analysis used for the present research extends from January 2003

to January 2008. The vegetation cover type is mainly permanent alpine meadow with Festuca rubra,

Nardus stricta and Trifolium. The soil texture is sandy-loam. As suggested by the literature [41,43],

RD is about 0.209 m while AWSC is 125 mm/m, with a soil water storage of 26.1 mm. Since August

2002, an EC system was operational. It consists of an open-path infrared gas analyzer and an ultrasonic

anemometer; along with EC flux measurements, the main meteorological variables are measured at a

height of 2.5 m. Detailed information about this are provided by [46].
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data per day represents the ratio between the number of measurements with a 30-min time step,

collected during the considered day, and the number of 30-min intervals in the same day. The studied

sites exhibit percentages of missing data significantly lower than the limits reported in the scientific

literature. Indeed, for the whole observation periods, they amount to 5.9% for de-rur, 5.1% for us-me2,

and 0.01% for it-mbo. A summary is provided in Table 1.

Table 1. Missing values for the three sites.

Name Record Period Number of Days (-) Number of 30 min Intervals (-) Missing LE (%)

de-rur 2012 to 2016 1614 77472.0 5.9
us-me2 2006 to 2010 1188 57024.0 5.1
it-mbo 2003 to 2008 1829 87744.0 0.01

2.2. Models Selection for Potential and Actual Evapotranspiration Assessment

In the current work, Penman formulation has been considered for the assessment of potential

evapotranspiration, while the AA and API models have been selected among actual evapotranspiration

empirical relationships. According to the literature, the Penman model, belonging to the category of

the combined methods, is the most commonly used method to derive potential evapotranspiration [53],

so, it has been selected since it represents a well-consolidated model. The AA and API models

respectively belong to the complementary and radiation-based categories. Even if these classes of

methods may appear to be an old-fashioned approach, a continuous and rising interest has appeared

in their application in the scientific literature [14]. Indeed, they are accessible to less experienced

users and require only basic meteorological data, provided, free of charge, by open access archives.

In addition, these models are also foreseen for forecasting purposes. They have been proven to predict,

with a good accuracy, the variations in evapotranspiration fluxes using the projections of future climate

scenarios [54–56]. On the contrary, combination-based and energy-balance approaches, although very

accurate, require significant computational efforts and technical expertise for their implementation.

Moreover, detailed input parameters are needed to run these models. Finally, the AA and API models

were proven to result in a very good fit to the observations [57–59].

2.2.1. Penman Model

The Penman equation PETPM, used for estimating potential evapotranspiration, can be written

as follows:

PETPM =
1

λ

[

∆

∆ + γ
(Rn −Gsoil)

]

+

[

γ

γ+ ∆
EA

]

(2)

In this formula, evapotranspiration is calculated by weighing the evaporation rate due to net

radiation and the evaporation rate due to mass transfer. In Equation (2), Rn represents the net

radiation (MJ m−2 d−1); Gsoil represents the soil heat-flux density at the soil surface (MJ m−2 d−1),

measured using SHF (soil heat flux) sensors at the surface; and ∆ is the slope of the saturation vapor

pressure–temperature curve (kPa ◦C−1) given by the formula [49]:

∆ =
4098

[

0.6108 exp
(

17.27·Tmean
Tmean+237.3

)]

(237.3 + Tmean)
2

(3)

where Tmean represents the average temperature between maximum and minimum values during

the day (◦C), γ represents the psychrometric constant (kPa ◦C−1), λ represents the latent heat of

vaporization (MJ kg−1). EA represents the drying power of the air, which is expressed as [49]

EA = 2.6(1 + 0.54·u)(es − ea) (4)
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In Equation (4), u represents the wind speed (ms−1), 2.6(1 + 0.54·u) is the wind function, es

represents the saturation vapor pressure (kPa), ea represents the vapor pressure (kPa).

2.2.2. AA Model

The Advection-aridity (AA) model is an approach commonly used for the assessment of actual

evapotranspiration. It is a complementary relationship (CR) model since it is based on Bouchet’s [23]

hypothesis which states that a complementary feedback mechanism exists between actual and potential

evapotranspiration. The rationale behind this concept is that, under conditions of constant energy

input to a given land surface-atmosphere system, water availability becomes limited and actual

evapotranspiration decreases below the potential one. The energy that becomes available due to the

reduction of actual ET is used to raise the temperature of the air by means of the sensible heat flux,

consequently the air is dried and this results in the increase in potential ET in equal amount of the

reduction of AET. In the opposite case (increase in water availability), the reverse process occurs,

and actual ET increases as potential one decreases. The evapotranspiration occurring when AET equals

PET is referred to as the wet environment evapotranspiration. According to [60], the formulation of

AA model is

AETAA = (2α− 1)
1

λ

[

∆

∆ + γ
(Rn −Gsoil)

]

−

[

γ

γ+ ∆
EA

]

(5)

where α is the PT coefficient set at 1.26.

The equation combines an aerodynamic term with an energy component based on net incoming

radiation. In particular, the second term of this model represents the effects of large-scale advection in

the mass transfer of water vapor represented by the aerodynamic vapor transfer term EA.

2.2.3. API Model

The second model selected for AET prediction in present analysis is the API model. In [22],

the Priestley-Taylor model [9] has been modified for the estimation of non-potential evapotranspiration,

resulting in the following equation:

AETAPI =
1

λ
·αAPI

[

∆

∆ + γ
(Rn −Gsoil)

]

(6)

The dimensionless coefficient, αAPI, is expressed as a threshold function of the of soil moisture.

As surface soil moisture is not routinely available, API index [61] has been used to mimic soil moisture

conditions:

API =
−i
∑

t=−1

Ptk
−t (7)

where i represents the considered number of antecedent days, k represents the soil decay constant,

and Pt represents the rainfall during day t.

Given a threshold value of the API equal to 20 mm [22,62,63], if the current API value is lower

than or equal to the threshold API, then

αAPI = 0.123(API) − 0.0029(API)2
− 0.0000056(API)3 (8)

If the current API value is larger than the threshold API, then

αAPI = 1.26 (9)

assuming that for an over-saturated system (i.e., API > 20 mm), AET rates are no longer dependent on

the soil water content, but they are a constant percentage of PET.
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2.3. Net Radiation and Soil Heat-Flux Derived from Empirical Formulas

Where measurements of Rn and Gsoil are not available, these variables can be estimated from

empirical relationships suggested by [49]. The net radiation can be derived as the difference between

the incoming net shortwave radiation (Rns) and the outgoing net longwave radiation (Rnl):

Rn = Rns−Rnl (10)

where:






















Rns = (1− α)Rs

Rnl = σ













T
maxk4+T

mink4+
2













(0.34− 0.14
√

ea)
(

1.35 Rs
Rso − 0.35

) (11)

and






















Rs =
(

as + bs
n
N

)

Ra

Ra =
12(60)

π
Gscdr[(ω2 −ω1) sinϕ sin δ+ cosϕ cos δ(sinω2 − sinω1)]

Rso =
(

0.75 + 2·10−5z
)

Ra

(12)

In the previous equations, α is albedo or canopy reflection coefficient; Rs is the incoming solar

radiation; σ is the Stefan-Boltzmann constant; Tmax,K and Tmin,K are, respectively, the maximum and

minimum absolute temperatures during the 24 h period; Rso is the clear-sky solar radiation; as and

bs are regression constants, expressing the fraction of extraterrestrial radiation reaching the earth on

overcast days; n is the actual duration of sunshine; N is the maximum possible duration of sunshine or

daylight hours; Ra is the extraterrestrial radiation in the hour; Gsc is the solar constant; dr represents the

inverse relative Earth–Sun distance; ω1 and ω2, respectively, are the solar time angle at the beginning

and end of the period; ϕ is the latitude; δ is the solar declination; z is the station elevation above

sea level.

Soil heat fluxes can be empirically derived as follows:

Gsoil = cs
Ti − Ti−1

∆t
∆z (13)

cs represents the soil heat capacity, Ti is the air temperature at time i, Ti−1 is the air temperature at time

i − 1, ∆t is the length of time interval, ∆z is the effective soil depth.

2.4. Models Evaluation

Modelled AET fluxes are in the following compared to the observed AET fluxes from the EC

measurements, for the purpose of model evaluation. The comparison helps to test the ability of the

selected models to predict actual evapotranspiration fluxes but, even more importantly, it helps to detect

the limitations of each approach for each of the cases study and their relevant properties. A monthly

scale fitting analysis has been performed, illustrating the specific findings for the whole period of

observation as well as for the wet and dry periods, as later better described. Three goodness-of-fit

statistics have been accounted for. The normalized root mean square error (RMSEd) as a measure of

error magnitude, the index of agreement (d) as a measure of patterns agreement, and the correlation

coefficient (r) as a measure of correlation between modelled and measured variables, are estimated

as follows:

RMSE(mm) =















1

n

n
∑

i=1

(AETmod,i −AETobs,i)
2















1
2

(14)

RMSEd (−) =
RMSE (mm)

AETobs

(15)
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From Figure 3, it appears that the wet state periods have different lengths for the different sites.

For us-me2 the wet state periods last three months, compared to four and five months, respectively,

for de-rur and it-mbo. The different duration of the periods where the energy limited scheme is applied

can be justified by the soil water storage capacity of the specific sites. Indeed, us-me2 has the highest

SWS (99.6 mm) which provides a stronger resistance to water vapor flow from the soil surface to the

atmosphere. This is the reason why the Sister site, longer appears water-stressed. Congruently the

longer energy limited period for the Bondone Mountain site (it-mbo) is explained by the very small

soil water storage capacity.

Provided the illustrated findings related to the temporal transition from dry to wet

states, a threshold approach is suggested to more realistically mimic the intra-annual actual

evapotranspiration, which couples the Penman (PM) formulation, representing AET during the

wet periods (when Rn < 2 MJ/m2d−1), and either the AA (namely PM/AA) or the API (namely PM/API)

approaches, representing AET during the dry periods. As previously reported, the transition between

states, which is from PM to API (or AA) is provided by the net radiation values. If Rn is the current

monthly net radiation and RnT is the mentioned net radiation threshold (2 MJ/m2d−1), the threshold

approach results in the following expression:

if Rn < RnT →→ AETPM/AA = AETPM/API = PETPM

=
1

λ

[

∆

∆+γ
(Rn −Gsoil)

]

+
[

γ

γ+∆
EA

]

if Rn > RnT →→































AETPM/API = AETAPI =
1

λ
αAPI

[

∆

∆+γ
(Rn −Gsoil)

]

or

AETPM/AA = AETAA = (2− 1)
1

λ

[

∆

∆+γ
(Rn −Gsoil)

]

−
[

γ

γ+∆
EA

]

(18)

3.2. Monthly AET Models Evaluation

According to the methods and findings reported, meteorological data-based methods previously

discussed have been applied and compared in this study:

(i) the AA, or advection-aridity, method as described by Equation (5);

(ii) the API, or the antecedent precipitation index, method as described by Equation (6);

(iii) the threshold PM/API and PM/AA models as described by Equation (18);

At this stage, a value of the Priestley-Taylor coefficient α equal to 1.26 has been considered in

the model evaluation, and the symbolisms API(1.26) and PM/API(1.26) are used to indicate these

circumstances. At a first visual inspection, it is possible to observe how, in the cases of the de-rur

and it-mbo sites, there is generally a good correspondence between observed and modelled values.

An important discrepancy exists instead in the case of the us-me2 site where the API and AA models

tend to overestimate (substantially in the case of the API approach) the observed AET values, especially

during the dry states (Figure 4), confirming the difficulties in modelling water-limited systems [35].

In the case of the threshold approaches PM/AA and PM/API(1.26), underestimation during the wet

periods appears reduced while large overestimation still persists during the dry periods, especially for

the methods accounting for the API approach.
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Table 2. Annual actual evapotranspiration losses from the EC flux data (AETec) and from the compared

meteorological data-based approach models (AA= advection-aridity method; API (1.26)=API corrected

potential evapotranspiration, with α = 1.26; PM/AA = Penman/advection-aridity threshold model;

PM/API(1.26) = Penman/API corrected potential evapotranspiration threshold model, with α = 1.26;

PM/APICAL = Penman/API corrected potential evapotranspiration calibrated threshold model).

(a) us-me2

AETec
(mm)

AA
(mm)

API(1.26)
(mm)

PM/AA
(mm)

PM/API(1.26)
(mm)

PM/APICAL

(mm)

Total 562.19 606.75 891.52 681.25 952.69 574.87

(b) de-rur

Total 536.15 416.34 551.44 472.76 595.33 574.39

(c) it-mbo

Total 471.22 543.04 574.75 578.04 605.70 488.49

To quantify the model performances in predicting AET water losses, the goodness-of-fit indices

evaluation is illustrated in Table 3. Over the whole period of observation, the best performing model

results the API approach for de-rur and the AA method for us-me2 and it-mbo. Over the full record of

observation, the use of the threshold approach to mimic intra-annual ET variability only improves

RMSEd by 15% in the case of the us-me2 site, of about 10% in the case of the de-rur site and close to 8%

in the case of it-mbo. The pattern agreement index d and the correlation coefficients r also show a

moderate improvement for both experimental sites.

Table 3. Goodness-of-fit indices for the four applied models. Errors are computed on monthly AET

time series for the whole period of observation (AA = the advection-aridity method; API (1.26) = the

API corrected potential evapotranspiration with α = 1.26; PM/AA = the Penman/advection-aridity

threshold model; PM/API(1.26) = the Penman/API corrected potential evapotranspiration threshold

model with α = 1.26; PM/APICAL = Penman/API corrected potential evapotranspiration calibrated

threshold model).

Whole Period of Observation

RMSE (mm) RMSEd (-) d(-) r(-) EQ.

(a) us-me2

AA 27.04 0.60 0.66 0.90 (5)
API (1.26) 49.02 1.08 0.51 0.85 (6)
PM/AA 23.69 0.52 0.71 0.90

(18)
PM/API(1.26) 44.98 0.99 0.54 0.89

PM/APICAL(0.71) 13.40 0.30 0.78 0.89 (18) + αCAL

(b) de-rur

RMSE (mm) RMSEd (-) d(-) r(-) EQ.

AA 12.91 0.27 0.81 0.97 (5)
API (1.26) 8.89 0.19 0.88 0.99 (6)
PM/AA 11.83 0.25 0.83 0.94

(18)
PM/API(1.26) 8.32 0.17 0.89 0.99

PM/APICAL(1.22) 6.64 0.14 0.90 0.99 (18) + αCAL

(c) it-mbo

RMSE (mm) RMSEd (-) d(-) r(-) EQ.

AA 16.04 0.41 0.84 0.97 (5)
API (1.26) 16.87 0.44 0.83 0.98 (6)
PM/AA 15.12 0.38 0.84 0.97

(18)
PM/API(1.26) 16.80 0.43 0.83 0.98

PM/APICAL(0.99) 7.53 0.19 0.91 0.98 (18) + αCAL
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Model prediction capabilities do not appear to significantly improve on the long-term scale. In the

case of the Sister site, this is probably due to the short length of the wet period (about three months

over the year) for which the threshold approach produces a correction. In the case of the Rollesbroich

site and Bondone Mountain, the general agreement showed by the basic AA and API model with

observed data might be the cause. Differences in terms of performances are more evident when the

goodness-of-fit indices are computed separately for the wet and dry periods (Table 4). During the wet

period PM/API and PM/AA actually represent the same model (the PM) and for this reason they are

featured by the same errors.

Table 4. Goodness-of-fit indices for the four applied models. Errors are computed on monthly AET

time series for the wet state period (AA = the advection-aridity method; API (1.26) = the API corrected

potential evapotranspiration with α = 1.26; PM/AA = the Penman/advection-aridity threshold model;

PM/API(1.26) = the Penman/API corrected potential evapotranspiration threshold model with α = 1.26;

PM/APICAL = Penman/API corrected potential evapotranspiration calibrated threshold model).

Wet State Period

RMSE (mm) RMSEd (-) d(-) r(-) EQ.

(a) us-me2

AA 24.45 0.94 0.84 0.16 (5)
API (1.26) 19.71 0.76 0.87 0.71 (6)

PM/AA = PM/API(1.26) = PM/APICAL(0.71) 6.78 0.26 0.96 0.55 (18); (18) + αCAL

(b) de-rur

AA 12.82 0.73 0.38 0.79 (5)
API (1.26) 6.98 0.40 0.66 0.88 (6)

PM/AA = PM/API(1.26) = PM/APICAL(1.22) 5.21 0.30 0.67 0.82 (18); (18) + αCAL

(c) it-mbo

AA 6.87 1.02 0.81 0.06 (5)
API (1.26) 6.09 0.91 0.82 0.26 (6)

PM/AA = PM/API(1.26) = PM/APICAL(0.99) 5.58 0.83 0.87 0.56 (18); (18) + αCAL

Large performance improvements are associated with the threshold model (Equation (18)). In the

case of the de-rur site, the normalized RMSEd reduces by about 34%, whereas the agreement index d

and the correlation coefficient increased, respectively, by about 70% and 3%. In the case of the us-me2

site, improvements are even more evident with normalized RMSEd, which reduced by about four

times, as well as with the increase in the correlation coefficient. A moderate improvement is also

detected for the pattern agreement index of about 14%. In the case of the Bondone Mountain site,

the RMSEd descreases by about 20% while the index of agreement moved from 0.81 to 0.87. A clear

improvement is achieved for r which increases by more than 100%. The performances of the models

are still moderate in the case of the dry state period (Table 5). During this period there is of course no

benefit from using the threshold approach (PM/AA and PM/API goodness-of-fit indices in Table 5 are

the same of the AA and API respectively). AA still appears the best performing in the case of us-me2

and it-mbo whereas better prediction is achieved with the API approach in the case of the de-rur site.
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Table 6. Cont.

Whole Period of Observation Wet State Period Dry State Period

(b) de-rur

AA 21.23 9.14 27.47
API (1.26) 26.70 8.10 35.33
PM/AA 20.78 5.21 27.47

PM/API(1.26) 26.71 5.21 35.33

(c) it-mbo

AA 38.36 12.36 47.64
API (1.26) 37.31 16.91 45.40
PM/AA 36.41 5.58 47.64

PM/API(1.26) 36.56 5.58 45.40

3.4. AET Models Calibration

The threshold approach has significantly improved the monthly scale prediction of evaporative

demands during the wet state periods, in particular for the Mediterranean forested Sister site

water-limited system. Overestimation still persists during the dry periods of limited water availability.

To further improve the prediction during this specific time window and, after all, to further improve

the description of the intra-annual variability of ET on the long-term scale, a calibration of the

Priestley-Taylor coefficient has been necessary. Many authors in the past have argued about the need

for the calibration of the α coefficient in the formulation of PT in order to improve ET prediction [64,65].

Although the original value of α proposed by Mawdsley and Ali [22] is 1.26, a moderate range

of variability has been reported for such a coefficient in the relevant literature. McNaughton and

Black [66] suggested the use of α = 1.05; Davies and Allen [67] proposed a coefficient of 1.27, while

Morton [68] proposed a coefficient of approximately 1.32 (similar to the 1.31 value proposed by

Hobbins et al. [69]. De Bruin and Keijman [70] further argued that the variation of α lies between

1.15 and 1.42. A wider range of variability, between 1.07 and 2.20, was predicted by Cristea et al. [71].

Fundamentally, no clear tendency in terms of climate and vegetation cover appears from the literature.

To follow the intra-annual evapotranspiration dynamic, a monthly scale calibration of the value of

the Priestley-Taylor coefficient, α, is proposed in the current study using the eddy covariance data

(AETec) as a constraint. The calibration involved the API method. A calibration of α from the AA

method is not foreseen as besides the Priestley-Taylor coefficient, the AA model is also potentially

affected by the calibration of the wind function [72–74]. Furthermore, the calibration only refers to the

dry water-limited periods as it is aimed to improve the prediction during this specific span of time.

With reference to the API method, assuming that, at the monthly scale AETAPI = AETEC (i.e., that the

actual evapotranspiration losses computed by the API method as described by Equation (6) during the

i-th month equals the ET losses computed from the observed EC fluxes during the same i-th month):

AETAPI,i =
1

λ
·αi

[

∆

∆ + γ
(Rn −Gsoil)

]

= AETec,i (19)

the α coefficient can be computed, at the monthly scale, reversing Equation (19) to derive

αi = αi,CAL = λ·AETec,i·
∆ + γ

∆
·

1

Rn −Gsoil
(20)

where the AETec losses are assumed to correspond to the observed eddy correlation values, and “i”

represents the monthly index.

The monthly patterns for the calibrated Priestley-Taylor coefficient during the dry state periods

show a relatively stationary value for the αCAL coefficient for the three experimental sites, a condition

that makes the assumption of an average constant parameter rather reliable (Figure 7). An average
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value of αCAL approximatively equal to 1.22 for de-rur, 0.71 for us-me2, and 0.99 for it-mbo has been

found. The similarity between the conventional value of α = 1.26 and αCAL = 1.22 for the case of

the Rollesbroich site is probably due to the relatively small prediction errors exhibited by the basic

model API. In the case of the us-me2 and it-mbo sites, the calibrated α estimate is consistent with a

recent investigation [75], which reports about the calibration of the Priestley-Taylor coefficient under a

gradient of climate and land cover conditions.

 

Figure 7. Monthly patterns for the calibrated αCAL coefficient at us-me2 (a), de-rur (b) and it-mbo

during water limited periods.

The accuracy of the AET values prediction provided by the calibrated API models, with αCAL = 1.22

for the Rollesbroich site, αCAL = 0.71 for the Sister site, and αCAL = 0.71 for the Bondone Mountain site

has been tested and compared to those resulting from the non-calibrated models by using both a visual

inspection (Figures 8 and 9) and the quantification of goodness-of-fit indices (Tables 3–5).
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between AET models for a single site in different seasons might help improve evapotranspiration losses

assessment. The transition from dry to wet state conditions occurs for a threshold value of net radiation

of 2 MJ/m2d−1. The ability of basic AA and API approaches to model intra-annual evapotranspiration

has been evaluated and compared to the performances of a proposed threshold approach, which

couples PET and basic AET relationships. Large performance improvements are associated with the

threshold model in the case of the wet states period assessment. The RMSEd reduction was about 34%

in the case of de-rur site, about 20% for Bondone mountain, and for the Sister site, the normalized

RMSE reduced about four times. The large overestimation that still persists during the dry state

periods has been improved by a calibration of α-coefficient. In this case, for both the whole period of

observation and the dry periods, the calibrated threshold approach (PM/APICAL), returns promising

results. Error magnitudes are reduced by about 80% for the Sister site, about 30% in the case of the

Rollesbroich site, and about 60% for Bondone Mountain. Poor improvement was detected for the

whole period of observation by the threshold approach in the absence of the α-coefficient calibration.

In the case of the Rollesbroich site and Bondone Moutain site, it might be seen in the general agreement

showed by the basic AA and API models with observed data. The implementation of the threshold

approach requires the use of net radiation and soil heat fluxes as input parameters. If measured data of

Rn and Gsoil are not available at the experimental site, they can be estimated using empirical formulas.

The use of empirical formulas to predict these variables affects neither the switch mechanism nor the

detection of the wet and dry state periods, it only impacts the value of the net radiation threshold.

Indeed, RnT increases from about 2 to 4 MJ/m2d−1,probably due to the overestimation produced by the

empirical relationships. However, an improvement in the assessment of Rn from climate data would

be important to propose an approach fully based on climate data. An extension of this analysis to more

experimental sites, featured by different climate characteristics and land covers, would help foster and

strengthen the relevant findings, but is very unlikely to find general rules. Potentially, equitant systems,

those systems that straddle the energy–water limited area and for which the switching between the

two states is more marked, could more evidently benefit from the proposed findings.
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