000878333 001__ 878333
000878333 005__ 20210130005549.0
000878333 0247_ $$2doi$$a10.1103/PhysRevResearch.2.013145
000878333 0247_ $$2Handle$$a2128/25759
000878333 0247_ $$2altmetric$$aaltmetric:75862328
000878333 0247_ $$2WOS$$aWOS:000602489700003
000878333 037__ $$aFZJ-2020-02785
000878333 082__ $$a530
000878333 1001_ $$0P:(DE-HGF)0$$aMacaluso, E.$$b0$$eCorresponding author
000878333 245__ $$aCharge and statistics of lattice quasiholes from density measurements: A tree tensor network study
000878333 260__ $$aCollege Park, MD$$bAPS$$c2020
000878333 3367_ $$2DRIVER$$aarticle
000878333 3367_ $$2DataCite$$aOutput Types/Journal article
000878333 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601036730_14614
000878333 3367_ $$2BibTeX$$aARTICLE
000878333 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878333 3367_ $$00$$2EndNote$$aJournal Article
000878333 520__ $$aWe numerically investigate the properties of the quasihole excitations above the bosonic fractional Chern insulator state at filling $\nu=1/2$, in the specific case of the Harper-Hofstadter Hamiltonian with hard-core interactions. For this purpose, we employ a tree tensor network technique, which allows us to study systems with up to N=18 particles on a 16×16 lattice and experiencing an additional harmonic confinement. First, we observe the quantization of the quasihole charge at fractional values and its robustness against the shape and strength of the impurity potentials used to create and localize such excitations. Then, we numerically characterize quasihole anyonic statistics by applying a discretized version of the relation connecting the statistics of quasiholes in the lowest Landau level to the depletions they create in the density profile [E. Macaluso et al., Phys. Rev. Lett. 123, 266801 (2019)]. Our results give a direct proof of the anyonic statistics for quasiholes of fractional Chern insulators, starting from a realistic Hamiltonian. Moreover, they provide strong indications that this property can be experimentally probed through local density measurements, making our scheme readily applicable in state-of-the-art experiments with ultracold atoms and superconducting qubits.
000878333 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000878333 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x1
000878333 588__ $$aDataset connected to CrossRef
000878333 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000878333 7001_ $$0P:(DE-HGF)0$$aComparin, T.$$b1
000878333 7001_ $$0P:(DE-HGF)0$$aUmucalılar, R. O.$$b2
000878333 7001_ $$0P:(DE-HGF)0$$aGerster, M.$$b3
000878333 7001_ $$0P:(DE-HGF)0$$aMontangero, S.$$b4
000878333 7001_ $$0P:(DE-Juel1)177780$$aRizzi, Matteo$$b5
000878333 7001_ $$0P:(DE-HGF)0$$aCarusotto, I.$$b6
000878333 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.2.013145$$gVol. 2, no. 1, p. 013145$$n1$$p013145$$tPhysical review research$$v2$$x2643-1564$$y2020
000878333 8564_ $$uhttps://juser.fz-juelich.de/record/878333/files/1910.05222.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000878333 8564_ $$uhttps://juser.fz-juelich.de/record/878333/files/1910.05222.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510
000878333 8564_ $$uhttps://juser.fz-juelich.de/record/878333/files/PhysRevResearch.2.013145.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000878333 8564_ $$uhttps://juser.fz-juelich.de/record/878333/files/PhysRevResearch.2.013145.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599
000878333 909CO $$ooai:juser.fz-juelich.de:878333$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177780$$aForschungszentrum Jülich$$b5$$kFZJ
000878333 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000878333 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x1
000878333 9141_ $$y2020
000878333 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878333 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878333 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0
000878333 980__ $$ajournal
000878333 980__ $$aVDB
000878333 980__ $$aUNRESTRICTED
000878333 980__ $$aI:(DE-Juel1)PGI-8-20190808
000878333 9801_ $$aFullTexts