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We numerically investigate the properties of the quasihole excitations above the bosonic fractional
Chern insulator state at filling ν = 1/2, in the specific case of the Harper-Hofstadter Hamiltonian
with hard-core interactions. For this purpose we employ a Tree Tensor Network technique, which
allows us to study systems with up to N = 18 particles on a 16 × 16 lattice and experiencing
an additional harmonic confinement. First, we observe the quantization of the quasihole charge
at fractional values and its robustness against the shape and strength of the impurity potentials
used to create and localize such excitations. Then, we numerically characterize quasihole anyonic
statistics by applying a discretized version of the relation connecting the statistics of quasiholes
in the lowest Landau level to the depletions they create in the density profile [E. Macaluso et al.,
Phys. Rev. Lett. 123, 266801]. Our results give a direct proof of the anyonic statistics for quasiholes
of fractional Chern insulators, starting from a realistic Hamiltonian. Moreover, they provide strong
indications that this property can be experimentally probed through local density measurements,
making our scheme readily applicable in state-of-the-art experiments with ultracold atoms and
superconducting qubits.

I. INTRODUCTION

In three spatial dimensions, quantum particles are typ-
ically classified into bosons and fermions, according to
the symmetry properties of their many-body wave func-
tions. In particular, bosonic (fermionic) many-body wave
functions must be globally symmetric (anti-symmetric)
in the particle coordinates, meaning that they take an
overall +1 (−1) factor upon particle exchange. This clas-
sification is enriched in two dimensions (2D), where ex-
otic particles called anyons have been predicted to ex-
ist [1–6] so that the effect of particle exchange (resp.
braiding) on the many-body wave functions is a generic
phase factor eiϕst (resp. eiϕbr = ei2ϕst), where the statis-
tical phase ϕst can take any value in [0, 2π). While bosons
and fermions are characterized by ϕst = 0 and ϕst = π,
Abelian anyons have statistical phase ϕst = απ, with α
a non-integer number. In the presence of topologically
degenerate ground states, the statistical phase factor is
further generalized to non-commuting unitary transfor-
mations acting on the ground-state manifold, and anyons
are said to be non-Abelian [7–11].

Among the physical systems for which the existence
of anyons has been predicted, fractional quantum Hall
(FQH) systems are probably the most popular ones [7,
10, 12–14]. Such strongly correlated quantum fluids
can host bulk elementary excitations –called quasiholes
(QHs) and quasiparticles (QPs)– which have been theo-

rized to carry fractional charge and exhibit anyonic be-
havior. Although the QH/QP fractional charge was mea-
sured in electron experiments [15], the anyonic statis-

tics of these excitations still lack a clear-cut experimen-
tal evidence. For this reason, a large ongoing effort is
based on controllable analog systems, where magnetic
quantum-mechanical effects occur for neutrally charged
particles such as atoms and photons prepared in the FQH
regime [16, 17].

Lattice counterparts of the FQH effect have also at-
tracted strong attention in the recent past. On the one
hand, they include direct generalizations of the FQH ef-
fect in 2D lattices [18–23], generally related to the inter-
acting Harper-Hofstadter (HH) model [24, 25]. On the
other hand, inspired by the Haldane model where topo-
logically non-trivial bands appear in the absence of a net
external magnetic field [26], several other variants have
been proposed [27–33]. All these lattice analogs of the
FQH states are commonly known as fractional Chern in-
sulators (FCIs) [34].

In this context, several theoretical studies investigated
the adiabatic preparation of different FCI states and the
associated phase diagrams [35–40]. Some works focused
on the numerical characterization of these states by in-
specting key quantities such as the many-body Chern
number, the particle entanglement spectrum, the behav-
ior of the correlation functions and the topological en-
tanglement entropy [41–43], while others proposed ex-
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φ = αΦ0, where Φ0 = 2π~/e is the magnetic flux quan-
tum. For a given value of the flux density α, multiple
choices of the phases θij are possible. Among them, we
choose the Landau gauge considered in Ref. [42]. More-
over, we consider the limit of hard-core bosons (that is,
with infinite on-site repulsion U), where each site can
host at most one particle. The local energy offsets Vi

represent additional attractive or repulsive potentials on
some lattice sites [see Fig. 1], which can encode the local-
ized impurity potentials to pin the QHs and/or an addi-
tional trapping potential for the particles. Even though
in the following we focus only on harmonic confinements,
more complicated forms could be studied with no addi-
tional difficulties.
Our study of this model is based on the Tree Tensor

Network technique. This is a variational ansatz in the
class of Tensor Network states, with some noticeable ad-
vantages and shortcomings compared to other TN ansatz
states, all essentially related to their loop-free structure.
On the one hand, TTNs do not capture the entangle-
ment area law for arbitrarily large systems (which, in-
stead, PEPS would do by construction). On the other
hand, their simple connectivity allows for very efficient
computational algorithms [54, 55, 72]. Thus, the bond
dimension D can be pushed to large enough values to
compensate for the intrinsic weaknesses of the ansatz,
yielding reliable numerical results for system sizes which
are beyond reach with exact diagonalization.
As shown in Ref. [42], the TTN technique is capable to

fully reproduce the properties of a FCI state without QH
excitations, in the interacting Harper-Hofstadter model.
These properties include the correct topological degener-
acy when the system is placed on a torus, the many-body
Chern number, the behavior of correlation functions, and
the entanglement-entropy scaling laws. For the case of a
FCI state with QH excitations, we benchmark the va-
lidity of the TTN ansatz through a comparison to exact
results – see Appendix A.
The core results of this work are obtained for systems

on a 16 × 16 square lattice, with open boundary condi-
tions (OBC) and in the presence of an additional har-
monic trapping. In the absence of trapping potentials,
the number of magnetic fluxes would have to be com-
mensurate with the number of particles in order to ob-
tain an appropriate magnetic filling ν = N/NΦ, where
the total number of fluxes for systems with OBCs is
NΦ = (L − 1)2α. However, adding a harmonic confine-
ment relaxes this constraint, and for a given number of
particles N it is possible to obtain a FCI state as the
ground state for different values of the flux density α [73].
Note that different values of α correspond to different
ratios between the lattice constant a and the effective
(model dependent) magnetic length lB ≡

√

A/2π, where
A is the area of the magnetic unit cell [46]. In particu-
lar, for the model under study (i.e., the HH model on a
square lattice), A = a2/α and such a ratio reads

a

lB
=

√
2πα . (2)

This expression of the lattice spacing in terms of the ef-
fective magnetic length will be of crucial importance both
in Sec. II B and for the analysis of the QH density deple-
tions in Sec. IVB.
A final remark concerns the competition between the

different possible states (FCIs, superfluid states, Mott
insulators, charge-density-waves, etc.) which might be
the ground state of the HH Hamiltonian in Eq. (1) – see
for instance Refs. [74–77]. In this respect, superimposing
an additional harmonic confinement to the lattice fur-
ther enriches an already complicated scenario. However,
for all the values of α we consider in the following it is
possible to identify a finite interval of strengths of the
harmonic confinement in which the system ground state
is a FCI state. Although a detailed analysis of the dif-
ferent competing phases as a function of the confining
strength is an interesting task, we postpone it to a fu-
ture work and to focus here only on intermediate values
of the harmonic potential strength for which the system
ground state has a FCI nature.

B. Monte Carlo sampling of discretized

Laughlin-like wave functions

As we will see, the TTN approach allows us to capture
a very close approximation of the true ground state of the
Harper-Hofstadter model for sizes compatible with near-
future experiments in cold gases or circuit QED systems.
However, there is a practical limit on the lattice size and
particle number that can be treated.
To address more technical questions related to the ef-

fect of the lattice grid, rather than of the system size [see
Sec. III B], we employ an auxiliary method which pro-
vides more flexibility. This consists in the Monte Carlo
sampling of a discretized version of the Laughlin-like
wave functions [13], which are evaluated on the sites of a
two-dimensional grid [as done for instance in Ref. [20]].
More explicitly, at magnetic filling 1/2, the wave function
for N particles and k QHs reads

ΨkQH(z1, . . . , zN ) =

[

N
∏

i=1

k
∏

µ=1

(zi − ηµ)

]

ΨL(z1, . . . , zN )

(3)
where ηµ is the position of the µ-th QH, ΨL(z1, . . . , zN )
is the celebrated Laughlin wave function, i.e.

ΨL(z1, . . . , zN ) =

N
∏

i<j

(zi − zj)
2 e−

∑
N

i
|zi|

2/4l2
B , (4)

and, on a lattice, the position of the j-th particle (zj =
xj+iyj , with the complex coordinate notation) only takes
discrete values (that is, with xj/a and yj/a integer).
The use of the Laughlin wave function as a reference

state for Harper-Hofstadter systems in the limit of low
flux density α is common in literature [18, 20]. In this
work, we use the wave functions in Eq. (3) to study the
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properties of QH excitations, and to provide a compari-
son with the HH model. The usefulness of this compari-
son relies on the study in Ref. [46], which proves that the
density profile around FCI QHs is a discretized version
of the one of Laughlin QHs in continuum space, up to a
proper rescaling of the length units. Of course, for a given
flux density α, a proper comparison with the HH model
requires that the lattice spacing of the discretization grid
satisfies Eq. (2).

For a discretized Laughlin-like wave function, it is
straightforward to generalize the Monte Carlo technique
which is typically used to extract observable quanti-
ties for the continuum-space Laughlin state [78, 79].
This consists in sampling configurations {z1, . . . , zN} dis-
tributed as in |Ψ(z1, . . . , zN )|2, which give access to ob-
servables like the density profile on the lattice. By chang-
ing the discretization of Ψ (that is, by tuning the lattice
constant a), we have access to different values of a/lB.
This is valuable to have a one-to-one comparison with
HH systems [where this ratio is set by α – see Eq. (2)],
but also to perform a more systematic study of the con-
vergence towards the continuum limit (a/lB → 0).
Note, to conclude, that other choices are available for

the discretized version of Laughlin-like wave functions,
see for instance Ref. [80], and we expect that similar re-
sults can be obtained for all of them.

III. ANYONIC STATISTICS FROM

DENSITY-PROFILE MEASUREMENTS

We now consider FQH and FCI states of N particles,
in the presence of some localized QH excitations. We
start by reviewing a recent proposal to characterize the
braiding phase of these excitations through density pro-
file measurements in the continuum [61, 70], and we then
conjecture on its generalization to the lattice case.

A. Continuum systems

In Refs. [61, 70], some of the current authors devel-
oped a scheme to access the anyonic statistics for QH
excitations of FQH states. In contrast to other propos-
als based on interferometric experiments [see for instance
Ref. [81]], this proposal only requires static measure-
ments. More precisely, a useful relation was obtained
to relate the QH braiding phase ϕbr and the expectation
value 〈L̂z〉 of the angular momentum operator taken on
some specific quantum states. Each state hosts two QHs
at positions ~η1 and ~η2, which are either diametrically op-
posite with respect to the system center or on top of each
other. For FQH states in the LLL, the correspondence
between 〈L̂z〉 and the mean square radius 〈r2〉 [82] sim-
plifies our scheme even further, since it implies that one
can obtain the braiding phase simply by measuring the
density profile in the presence of QHs. More precisely,
〈L̂z〉/~ + N = N〈r2〉/2l2B and the QH braiding phase

reads [70]

ϕbr

2π
=

N

2l2B

[

〈r2〉opp − 〈r2〉over
]

. (5)

The subscripts of 〈r2〉 refer to two aforementioned QH
configurations that need to be considered: “opp” indi-
cates diametrically opposite QHs (i.e., ~η1 = −~η2), while
“over” indicates overlapping QHs (i.e., ~η1 = ~η2). We
stress that, in Eq. (5), lB is the actual magnetic length

lB ≡
√

~/qB, depending on the particle charge q and on
the magnetic field B, and not a model dependent quan-
tity.
Several practical issues appear when applying Eq. (5),

due to the fact that it involves global properties of the
FQH cloud: First, one has to measure 〈r2〉opp and 〈r2〉over
on systems with exactly the same number of particles N
and with the same value of |~η1| and |~η2|. Second, one
needs to consider large-enough system sizes, so that ~η1
and ~η2 (in the “opp” configuration) are far enough from
each other and from the cloud boundaries. Third, global
properties of the system, like 〈r2〉, are not robust with
respect to low-energy perturbations, which in the case
of pinned QHs typically consist in the excitation of edge
modes [83, 84].
These three issues are drastically mitigated once we

rewrite Eq. (5) in terms of the depletion d(~ρ), which is the
change in the FQH density profile at position ~r induced
by a QH at position ~η, with ~r = ~η+~ρ. More precisely, we
define the depletion profiles d1QH(~ρ) and d2QH(~ρ) close to
single or double QH as

dkQH(~ρ) = n0QH(~r)− nkQH(~r), k = 1, 2. (6)

Here nkQH(~r) represents the average density on a state
with k QHs at position ~η, for k ∈ {0, 1, 2}. By com-
puting d1QH(~ρ) and d2QH(~ρ), the braiding phase can be
expressed as [61]:

ϕbr

2π
=

1

2l2B

∫

d~ρ ρ2 [d2QH(~ρ)− 2d1QH(~ρ)] . (7)

For finite-size systems the integral is defined up to a
cutoff distance |~ρ| = Rmax, which should be signifi-
cantly larger than the QH size, but also small enough to
avoid spurious effects due to the FQH cloud boundaries.
This guarantees the mathematical equivalence between
Eqs. (5) and (7). The dependence of Eq. (7) on the cut-
off Rmax is characterized by damped oscillations which
converge towards the actual value of ϕbr [61], as visible
in Figs. 4(b) and 5 (c) and (d).
The new expression for the braiding phase, Eq. (7),

has some clear advantages over Eq. (5). First, it only
depends on the local density perturbation induced by the
QHs, rather than on the global shape of the cloud. This
simplifies the measurement, which is now independent on
the precise position of the QHs. Second, the constraint
on the cutoff distance Rmax is milder than the one on the
distance |~η1 − ~η2| in the “opp” configuration, since now
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there is no need to consider two spatially separated QHs.
Third, local properties like the depletions in Eq. (7) are
not modified by perturbations which are localized at the
edge of the system, so that this measurement is expected
to be more robust against edge excitations and finite-
temperature effects.
In previous works, we numerically confirmed the valid-

ity of Eqs. (5) and (7) by a Monte Carlo study of two
paradigmatic FQH states. We considered the Laugh-
lin [70] and Moore-Read [61] wave functions, and for
the latter we focused on the case of two non-Abelian
QHs [7, 11]. Nevertheless, the procedure is totally gen-
eral, and it could be applied to any state in the LLL.

B. Lattice generalization

While in the previous works we presented the theory
relating the anyonic statistics of QHs to their depletion
profiles in a continuum geometry, here we discuss how
these relations [Eqs. (5) and (7)] change if one considers
lattice systems.
The mean square radius 〈r2〉 now reads

〈r2〉 = 1

N

∑

j

〈n̂j〉 |~rj |2, (8)

where ~rj is the position of the j-th site. With this def-
inition, it is straightforward to generalize Eq. (5) to the
lattice case:

ϕbr

2π
=

1

2l2B

∑

j

[〈n̂j〉opp − 〈n̂j〉over] |~rj |2. (9)

Similarly, we define the depletions d1QH(~ρj) and d2QH(~ρj)
as

dkQH(~ρj) = 〈n̂j〉0QH − 〈n̂j〉kQH, k = 1, 2, (10)

where 〈n̂j〉kQH is the average density on site j for a state
with k QHs at position ~η, and where ~rj = ~η + ~ρj . Thus
Eq. (7) becomes

ϕbr

2π
=

1

2l2B

∑

j

[d2QH(~ρj)− 2d1QH(~ρj)] |~ρj |2, (11)

where the sum over j is restricted to sites with |~ρj | <
Rmax, as for Eq. (7). Note that both expressions for
the braiding phase ϕbr [see Eqs. (9) and (11)] explicitly
depend on the effective magnetic length lB, defined in
Eq. (2).
Before moving on, we need to stress that the angular

momentum operator is not properly defined on a lattice,
and therefore the relation between the QH braiding phase
and the density profile [Eqs. (9) and (11)] is not math-
ematically rigorous in this case. However, the idea of
generalizing Eqs. (5) and (7) to the case of FCIs on a lat-
tice is motivated (and partially justified) by two observa-
tions: First, the study by Liu and co-authors [46] clearly

shows that, for systems with periodic boundary condi-
tions (PBCs), the density profile close to a single FCI
QH is a discrete sampling of the continuum case, once a
suitable (model-dependent) effective magnetic length is
introduced. In Sec. IV, we explicitly confirm this result to
the case of the HH model with OBC, both for a single and
a double QH. Second, we perform a complementary anal-
ysis of the lattice case, based on the discretized Laugh-
lin wave function described in Section II B. This flexible
ansatz allows us to scan different values of the grid spac-
ing a, and to compute the braiding phase through the
discretized versions of Eqs. (5) and (7). In Table I, we
report the numerical results obtained via Eq. (9), while
we will use Eq. (11) in Section IVB. We find that the
braiding phase of the QH excitations of the discretized
Laughlin state is in full agreement –up to some small de-
viations due to finite-size and discretization effects– with
the expected value ϕbr/(2π) = 1/2, within the statisti-
cal uncertainties of the Monte Carlo method. It is re-
markable that this still holds true for a/lB ≃ 1.77, which
corresponds to the maximum flux density that can be
realized in the HH model, i.e. α = 1/2.

a/lB ϕbr/(2π) α
0.5605 0.53± 0.04 0.05
0.9708 0.55± 0.04 0.15
1.2533 0.57± 0.04 0.25
1.7725 0.56± 0.04 0.50

TABLE I. Quasihole braiding phase ϕbr for a discretized
Laughlin-like wave function (with N = 40 particles), for dif-
ferent values of the grid spacing a. Numerical results (listed
in the second column, with their statistical uncertainty) are
obtained via Eq. (9) and Monte Carlo sampling of the dis-
cretized Laughlin wave functions. In the third column, we
list the value of α that would correspond, in the HH model,
to the chosen lattice spacing a/lB [see Eq. (2)].

In the next section we verify the validity of Eq. (11) on
the ground states of the interacting HH model, obtained
with the TTN technique.

IV. RESULTS

In our study of the HH model through the TTN
ansatz, we consider two sets of parameters: N = 12
bosons and α = 0.15 (Case I), or N = 18 particles and
α = 0.25 (Case II). These two choices for α correspond to
a/lB ≃ 0.97 and a/lB ≃ 1.25, respectively [see Eq. (2)].
Considering different values of α allows us to modify N in
a significant way without changing the size of the lattice,
and it also gives us the opportunity to inspect discretiza-
tion and flux-dependent effects. Note also that for Case
II we choose α = 0.25, which is one of the most appealing
flux densities for realizing almost flat bands in realistic
experiments [62–65]. We also introduce an additional
harmonic confinement in the form Vj = Ω|~rj − ~rcenter|2,
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effects, probably due to the specific properties of the HH
bands for a given value of α. This would explain why
this behavior is more evident for Case II (α = 0.25) than
for Case I (α = 0.15).

Finally, we used the method described in Sec. III B to
extract the braiding phase ϕbr of the lattice QHs, as a
function of the cutoff radius Rmax [see Figs. 4 (b) and 5
(c) and (d)]. We compare it with the results obtained for
both the QHs of the continuum-space Laughlin state and
their discretized counterparts. Note that for the sampling
of the discretized QH wave functions we chose a different
discretization grid spacing for Case I and Case II, since
they are characterized by a different value of the ratio
a/lB [see Eq. (2)].

For Case I, the behavior of ϕbr obtained for the QHs
of the interacting HH model is extremely similar to the
one predicted by the Monte Carlo sampling of the dis-
cretized Laughlin QHs up to a certain value of Rmax [see
Fig. 4, panel (b)]. After that, at larger cutoff radii, we ob-
serve small deviations between the two data sets, reflect-
ing the deformations in the depletion d2QH(~ρj) caused by
the plus-shaped pinning potential. However, the results
shown in Fig. 4(b) clearly indicate that for Case I the
anyonic nature of the QHs in the interacting HH model
can be probed through simple density measurements.

The interpretation of the QH braiding phase obtained
for Case II is more subtle. As we have already discussed,
for α = 0.25 the density depletions of the lattice QHs
display more visible discrepancies, with respect to their
continuum counterparts, than for α = 0.15. Moreover,
due to the |~ρj |2 factor in Eq. (11), these discrepancies in
the depletions translate into even stronger effects affect-
ing the behavior of ϕbr(Rmax). This is clearly visible in
panel (c) of Fig. 5. Despite discrepancies in the profile of
the density depletions, the method proposed in Eq. (11)
is still valid and the correct results for ϕbr(Rmax) are re-
covered for large enough integration regions –where the
deformations in the density depletions are damped. We
attribute this behavior to the topological robustness [87]
of the QH braiding properties and we expect further con-
firmation of this interpretation from future studies of of
larger systems. In spite of these additional difficulties,
the results obtained for Case II confirm that the any-
onic nature of the QHs can be inspected through simple
density-profile measurements also in the experimentally
promising α = 0.25 case.

Even though our method to measure QH braiding
phase seems to be robust against the deformations in-
duced by extended pinning potentials in the depletion
profiles, they affect the behavior of ϕbr(Rmax) at small
and intermediate values of the cutoff radius. To get rid
of these effects, one could in principle create multiple
QHs at the same position by locally inserting the suitable
amount of flux quanta, in the presence of a single-site po-
tential able to pin a single QH [36, 48, 88]. Despite being
experimentally feasible, in the theoretical framework this
flux-insertion procedure requires time-dependent simula-
tions of the interacting HH Hamiltonian, which at the

moment go beyond the capabilities of our TTN tech-
nique. Along this line, a recent application of the TTN
ansatz for time-dependent simulations opens interesting
perspectives [89].

V. CONCLUSIONS AND OUTLOOK

In this work we used a Tree Tensor Network ansatz
to study the properties of the quasihole excitations of
the fractional Chern insulator described by the Harper-
Hofstadter Hamiltonian with hardcore interactions. The
loop-free geometry of the Tree Tensor Network ansatz
allowed us to study systems with open boundary condi-
tions, far beyond the typical system sizes manageable by
exact diagonalization calculations.
In this way, first we showed that it is possible to use

localized pinning potentials to stabilize states hosting ei-
ther a single or two overlapping quasiholes and that the
expected fractional charge of these excitations is already
clearly visible in a N = 12 particle system. In this re-
spect, we discovered that superimposing an additional
harmonic confinement to the lattice greatly simplifies the
stabilization of the quasihole states.
Then, to characterize the statistics of the quasiholes,

we applied a lattice version of the equation proposed in
Ref. [61] and relating the quasihole braiding phase to the
depletions induced by such excitations in the system den-
sity. Our results clearly show that these excitations are
anyons, namely that they are neither bosons nor fermions
(for which ϕbr = 0, 2π), and that their braiding phase is
very close to the predicted one, i.e. ϕbr = 2πν. In spite
of the obvious limitations in the accuracy of the measure-
ment of ϕbr, mainly due to the size of the state-of-the-art
samples, we stress that our results have been obtained for
systems which are too small to accommodate two spa-
tially separated quasiholes and adiabatically braid them
to inspect their statistical properties, as it would be re-
quired by traditional measurement schemes.
As a result, the present study provides numerical evi-

dence that the anyonic statistics can indeed be observed
through simple density measurements in state-of-the-art
experiments with ultracold atoms and superconducting
qubits. First of all, the flux densities we considered in
this work –i.e., α = 0.15 and 0.25– are already within the
current experimental capabilities. The case of α = 0.25,
in particular, is of great interest from the experimen-
tal point of view. At such flux density the single-particle
spectrum of the HH Hamiltonian is characterized by four
energy bands, with a very convenient (low) ratio between
the width of the lowest band and its separation from the
higher ones. This makes α = 0.25 one of the most ap-
pealing flux densities for realizing almost flat bands in
realistic experiments [62–65]. At the same time, the lat-
tice size we looked at –i.e, L = 16– is comparable with
the one used in Ref. [65]. On top of that, adding an over-
all harmonic confinement to the lattice should be pos-
sible in both relevant setups: For ultracold atomic sys-







13

profile d
(D)
2QH(ρ) for different values of D. To visualize the

dependence on the bond dimension, we take D = 500 as
a reference case and define the depletion-profile deviation
as

∆d2QH(ρ) = d
(D)
2QH(ρ)− d

(500)
2QH (ρ). (B1)

This quantity is shown in Fig. 7, for D between 100 and
400. We observe that its fluctuations decrease for increas-
ing bond dimension, and that the curve for D = 400 is
barely distinguishable from 0, on this scale. We conclude
that for a TTN with D = 500 (the bond dimension used
for Case II in the main text) the systematic error in the
depletion profile is negligible.
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tional quantum Hall states in driven optical lattices,”
Phys. Rev. A 100, 053624 (2019).

[41] A. Sterdyniak, N. Regnault, and G. Möller, “Particle en-
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