000878336 001__ 878336
000878336 005__ 20220318173147.0
000878336 0247_ $$2doi$$a10.1103/PhysRevResearch.2.033200
000878336 0247_ $$2arXiv$$aarXiv:2001.09074
000878336 0247_ $$2Handle$$a2128/30730
000878336 0247_ $$2altmetric$$aaltmetric:87752941
000878336 0247_ $$2WOS$$aWOS:000604146800007
000878336 037__ $$aFZJ-2020-02788
000878336 041__ $$aEnglish
000878336 082__ $$a530
000878336 1001_ $$0P:(DE-HGF)0$$aHaller, Andreas$$b0
000878336 245__ $$aDetecting topology through dynamics in interacting fermionic wires
000878336 260__ $$aCollege Park, MD$$bAPS$$c2020
000878336 3367_ $$2DRIVER$$aarticle
000878336 3367_ $$2DataCite$$aOutput Types/Journal article
000878336 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645166884_32637
000878336 3367_ $$2BibTeX$$aARTICLE
000878336 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878336 3367_ $$00$$2EndNote$$aJournal Article
000878336 520__ $$aProbing the topological invariants of interacting systems stands as a grand and open challenge. Here we describe a dynamical method to characterize 1D chiral models, based on the direct observation of time-evolving bulk excitations. We present analytical and state-of-the-art numerical calculations on various flavors of interacting Su-Schrieffer-Heeger (SSH) chains, demonstrating how measuring the mean chiral displacement allows us to distinguish between topological insulator, trivial insulator, and symmetry-broken phases. Finally, we provide a readily-feasible experimental blueprint for a model displaying these three phases and we describe how to detect those
000878336 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000878336 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x1
000878336 588__ $$aDataset connected to arXivarXiv
000878336 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000878336 7001_ $$0P:(DE-HGF)0$$aMassignan, Pietro$$b1$$eCorresponding author
000878336 7001_ $$0P:(DE-Juel1)177780$$aRizzi, Matteo$$b2
000878336 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.2.033200$$n3$$p033200$$tPhysical review research$$v2$$x2643-1564$$y2020
000878336 8564_ $$uhttps://juser.fz-juelich.de/record/878336/files/PhysRevResearch.2.033200.pdf$$yOpenAccess
000878336 909CO $$ooai:juser.fz-juelich.de:878336$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878336 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177780$$aForschungszentrum Jülich$$b2$$kFZJ
000878336 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000878336 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x1
000878336 9141_ $$y2020
000878336 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878336 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878336 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0
000878336 980__ $$ajournal
000878336 980__ $$aVDB
000878336 980__ $$aUNRESTRICTED
000878336 980__ $$aI:(DE-Juel1)PGI-8-20190808
000878336 9801_ $$aFullTexts