000878340 001__ 878340
000878340 005__ 20220930130247.0
000878340 0247_ $$2doi$$a10.1200/JCO.2019.37.15_suppl.e13525
000878340 0247_ $$2ISSN$$a0732-183X
000878340 0247_ $$2ISSN$$a1527-7755
000878340 0247_ $$2Handle$$a2128/25482
000878340 0247_ $$2WOS$$aWOS:000487345800348
000878340 037__ $$aFZJ-2020-02789
000878340 082__ $$a610
000878340 1001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b0$$eCorresponding author
000878340 245__ $$aTreatment monitoring of immunotherapy and targeted therapy using FET PET in patients with melanoma and lung cancer brain metastases: Initial experiences.
000878340 260__ $$aNew York, NY$$bSoc.$$c2020
000878340 3367_ $$2DRIVER$$aarticle
000878340 3367_ $$2DataCite$$aOutput Types/Journal article
000878340 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597230570_29334
000878340 3367_ $$2BibTeX$$aARTICLE
000878340 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878340 3367_ $$00$$2EndNote$$aJournal Article
000878340 520__ $$aBackground: Due to the lack of specificity of contrast-enhanced (CE) MRI, the differentiation of progression from pseudoprogression (PsP) following immunotherapy using checkpoint inhibitors (IT) or targeted therapy (TT) may be challenging, especially when IT or TT is applied in combination with radiotherapy (RT). Similarly, for response assessment of RT plus IT or targeted therapy (TT), the use of CE MRI alone may also be difficult. For problem solving, the integration of advanced imaging methods may add valuable information. Here, we evaluated the value of amino acid PET using O-(2-[18F]fluoroethyl)-L-tyrosine (FET) in comparison to CE MRI for these important clinical situations in patients with brain metastases (BM) secondary to malignant melanoma (MM) and non-small cell lung cancer (NSCLC). Methods: From 2015-2018, we retrospectively identified 31 patients with 74 BM secondary to MM (n = 20 with 42 BM) and NSCLC (n = 11 with 32 BM) who underwent 52 FET PET scans during the course of disease. All patients had RT prior to IT or TT initiation (61%) or RT concurrent to IT or TT (39%). In 13 patients, FET PET was performed for treatment response assessment of IT or TT using baseline and follow-up scans (median time between scans, 4.2 months). In the remaining 18 patients, FET PET was used for the differentiation of progression from PsP related to RT plus IT or TT. In all BM, metabolic activity on FET PET was evaluated by calculation of tumor/brain ratios. FET PET imaging findings were compared to CE MRI and correlated to the clinical follow-up or neuropathological findings after neuroimaging. Results: In 4 of 13 patients (31%), FET PET provided additional information for treatment response evaluation beyond the information provided by CE MRI alone. Furthermore, responding patients on FET PET had a median stable clinical follow-up of 10 months. In 10 of 18 patients (56%) with CE MRI findings suggesting progression, FET PET detected PsP. In 9 of these 10 patients, PsP was confirmed by a median stable clinical follow-up of 11 months. Conclusions: FET PET may add valuable information for treatment monitoring in individual BM patients undergoing RT in combination with IT or TT.
000878340 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000878340 588__ $$aDataset connected to CrossRef
000878340 7001_ $$0P:(DE-HGF)0$$aAbdulla, Diana S. Y.$$b1
000878340 7001_ $$0P:(DE-HGF)0$$aScheffler, Matthias$$b2
000878340 7001_ $$0P:(DE-HGF)0$$aSchweinsberg, Viola$$b3
000878340 7001_ $$0P:(DE-HGF)0$$aSchlaak, Max$$b4
000878340 7001_ $$0P:(DE-HGF)0$$aKreuzberg, Nicole$$b5
000878340 7001_ $$0P:(DE-HGF)0$$aLandsberg, Jennifer$$b6
000878340 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b7
000878340 7001_ $$0P:(DE-HGF)0$$aCeccon, Garry$$b8
000878340 7001_ $$0P:(DE-HGF)0$$aWerner, Jan-Michael$$b9
000878340 7001_ $$0P:(DE-HGF)0$$aCelik, Eren$$b10
000878340 7001_ $$0P:(DE-HGF)0$$aRuge, Maximilian I.$$b11
000878340 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b12
000878340 7001_ $$0P:(DE-HGF)0$$aMarnitz, Simone$$b13
000878340 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b14
000878340 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b15
000878340 7001_ $$0P:(DE-HGF)0$$aWolf, Juergen$$b16
000878340 7001_ $$0P:(DE-HGF)0$$aMauch, Cornelia$$b17
000878340 773__ $$0PERI:(DE-600)2040222-3$$a10.1200/JCO.2019.37.15_suppl.e13525$$gVol. 37, no. 15_suppl, p. e13525 - e13525$$n15_suppl$$pe13525 - e13525$$tJournal of nuclear medicine$$v37$$x0022-3123$$y2020
000878340 8564_ $$uhttps://juser.fz-juelich.de/record/878340/files/Invoice_JNUMED-2020-248278.pdf
000878340 8564_ $$uhttps://juser.fz-juelich.de/record/878340/files/Galldiks_2020_Post%20Print_JNUMED_Treatment%20monitoring%20of%20immunotherapy%20and%20targeted%20therapy.pdf$$yOpenAccess
000878340 8564_ $$uhttps://juser.fz-juelich.de/record/878340/files/Invoice_JNUMED-2020-248278.pdf?subformat=pdfa$$xpdfa
000878340 8564_ $$uhttps://juser.fz-juelich.de/record/878340/files/Galldiks_2020_Post%20Print_JNUMED_Treatment%20monitoring%20of%20immunotherapy%20and%20targeted%20therapy.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878340 8767_ $$8JNUMED/2020/248278$$92020-08-06$$d2020-08-20$$ePublication charges$$jZahlung erfolgt$$pJNUMED/2020/248278$$zBelegnr. 1200156661, USD 450,-, kein Rechnungsdatum auf Rechnung
000878340 909CO $$ooai:juser.fz-juelich.de:878340$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000878340 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b0$$kFZJ
000878340 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b7$$kFZJ
000878340 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b12$$kFZJ
000878340 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b14$$kFZJ
000878340 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b15$$kFZJ
000878340 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000878340 9141_ $$y2020
000878340 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MED : 2018$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878340 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NUCL MED : 2018$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-18
000878340 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-18
000878340 920__ $$lyes
000878340 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000878340 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000878340 980__ $$ajournal
000878340 980__ $$aVDB
000878340 980__ $$aUNRESTRICTED
000878340 980__ $$aI:(DE-Juel1)INM-3-20090406
000878340 980__ $$aI:(DE-Juel1)INM-4-20090406
000878340 980__ $$aAPC
000878340 9801_ $$aAPC
000878340 9801_ $$aFullTexts