001     878340
005     20220930130247.0
024 7 _ |a 10.1200/JCO.2019.37.15_suppl.e13525
|2 doi
024 7 _ |a 0732-183X
|2 ISSN
024 7 _ |a 1527-7755
|2 ISSN
024 7 _ |a 2128/25482
|2 Handle
024 7 _ |a WOS:000487345800348
|2 WOS
037 _ _ |a FZJ-2020-02789
082 _ _ |a 610
100 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 0
|e Corresponding author
245 _ _ |a Treatment monitoring of immunotherapy and targeted therapy using FET PET in patients with melanoma and lung cancer brain metastases: Initial experiences.
260 _ _ |a New York, NY
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1597230570_29334
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background: Due to the lack of specificity of contrast-enhanced (CE) MRI, the differentiation of progression from pseudoprogression (PsP) following immunotherapy using checkpoint inhibitors (IT) or targeted therapy (TT) may be challenging, especially when IT or TT is applied in combination with radiotherapy (RT). Similarly, for response assessment of RT plus IT or targeted therapy (TT), the use of CE MRI alone may also be difficult. For problem solving, the integration of advanced imaging methods may add valuable information. Here, we evaluated the value of amino acid PET using O-(2-[18F]fluoroethyl)-L-tyrosine (FET) in comparison to CE MRI for these important clinical situations in patients with brain metastases (BM) secondary to malignant melanoma (MM) and non-small cell lung cancer (NSCLC). Methods: From 2015-2018, we retrospectively identified 31 patients with 74 BM secondary to MM (n = 20 with 42 BM) and NSCLC (n = 11 with 32 BM) who underwent 52 FET PET scans during the course of disease. All patients had RT prior to IT or TT initiation (61%) or RT concurrent to IT or TT (39%). In 13 patients, FET PET was performed for treatment response assessment of IT or TT using baseline and follow-up scans (median time between scans, 4.2 months). In the remaining 18 patients, FET PET was used for the differentiation of progression from PsP related to RT plus IT or TT. In all BM, metabolic activity on FET PET was evaluated by calculation of tumor/brain ratios. FET PET imaging findings were compared to CE MRI and correlated to the clinical follow-up or neuropathological findings after neuroimaging. Results: In 4 of 13 patients (31%), FET PET provided additional information for treatment response evaluation beyond the information provided by CE MRI alone. Furthermore, responding patients on FET PET had a median stable clinical follow-up of 10 months. In 10 of 18 patients (56%) with CE MRI findings suggesting progression, FET PET detected PsP. In 9 of these 10 patients, PsP was confirmed by a median stable clinical follow-up of 11 months. Conclusions: FET PET may add valuable information for treatment monitoring in individual BM patients undergoing RT in combination with IT or TT.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Abdulla, Diana S. Y.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Scheffler, Matthias
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schweinsberg, Viola
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schlaak, Max
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kreuzberg, Nicole
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Landsberg, Jennifer
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 7
700 1 _ |a Ceccon, Garry
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Werner, Jan-Michael
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Celik, Eren
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Ruge, Maximilian I.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kocher, Martin
|0 P:(DE-Juel1)173675
|b 12
700 1 _ |a Marnitz, Simone
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 14
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 15
700 1 _ |a Wolf, Juergen
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Mauch, Cornelia
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.1200/JCO.2019.37.15_suppl.e13525
|g Vol. 37, no. 15_suppl, p. e13525 - e13525
|0 PERI:(DE-600)2040222-3
|n 15_suppl
|p e13525 - e13525
|t Journal of nuclear medicine
|v 37
|y 2020
|x 0022-3123
856 4 _ |u https://juser.fz-juelich.de/record/878340/files/Invoice_JNUMED-2020-248278.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878340/files/Galldiks_2020_Post%20Print_JNUMED_Treatment%20monitoring%20of%20immunotherapy%20and%20targeted%20therapy.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/878340/files/Invoice_JNUMED-2020-248278.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878340/files/Galldiks_2020_Post%20Print_JNUMED_Treatment%20monitoring%20of%20immunotherapy%20and%20targeted%20therapy.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878340
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)173675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)131777
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MED : 2018
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NUCL MED : 2018
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21