000878342 001__ 878342
000878342 005__ 20250129092507.0
000878342 0247_ $$2doi$$a10.1007/s10270-020-00797-3
000878342 0247_ $$2ISSN$$a1619-1366
000878342 0247_ $$2ISSN$$a1619-1374
000878342 0247_ $$2Handle$$a2128/25868
000878342 0247_ $$2altmetric$$aaltmetric:83209296
000878342 0247_ $$2WOS$$aWOS:000531132800001
000878342 037__ $$aFZJ-2020-02791
000878342 082__ $$a004
000878342 1001_ $$0P:(DE-HGF)0$$aChen, Tao$$b0$$eCorresponding author
000878342 245__ $$aRequirement-driven model-based development methodology applied to the design of a real-time MEG data processing unit
000878342 260__ $$aNew York, NY$$bSpringer$$c2020
000878342 3367_ $$2DRIVER$$aarticle
000878342 3367_ $$2DataCite$$aOutput Types/Journal article
000878342 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602587499_2920
000878342 3367_ $$2BibTeX$$aARTICLE
000878342 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878342 3367_ $$00$$2EndNote$$aJournal Article
000878342 520__ $$aThe paper describes a multidisciplinary work that uses a model-based systems engineering method for developing real-time magnetoencephalography (MEG) signal processing. We introduce a requirement-driven, model-based development methodology (RDD and MBD) to provide a high-level environment and efficiently handle the complexity of computation and control systems. The proposed development methodology focuses on the use of System Modeling Language to define high-level model-based design descriptions for later implementation in heterogeneous hardware/software systems. The proposed approach was applied to the implementation of a real-time artifact rejection unit in MEG signal processing and demonstrated high efficiency in designing complex high-performance embedded systems. In MEG signal processing, biological artifacts in particular have a signal strength that overtop the signal of interest by orders of magnitude and must be removed from the measurement to achieve high-quality source reconstructions with minimal error contributions. However, many existing brain–computer interface studies overlook real-time artifact removal because of the demanding computational process. In this work, an automated real-time artifact rejection method is introduced, which is based on the recently presented method “ocular and cardiac artifact rejection for real-time analysis in MEG” (OCARTA). The method has been implemented using the RDD and MBD approach and successfully verified on a Virtex-6 field-programmable gate array.
000878342 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000878342 588__ $$aDataset connected to CrossRef
000878342 7001_ $$0P:(DE-Juel1)133935$$aSchiek, Michael$$b1$$ufzj
000878342 7001_ $$0P:(DE-Juel1)131757$$aDammers, Jürgen$$b2$$ufzj
000878342 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b3$$ufzj
000878342 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b4$$ufzj
000878342 773__ $$0PERI:(DE-600)2090971-8$$a10.1007/s10270-020-00797-3$$p1567–1587$$tSoftware and systems modeling$$v19$$x1619-1374$$y2020
000878342 8564_ $$uhttps://juser.fz-juelich.de/record/878342/files/Chen2020_Article_Requirement-drivenModel-basedD.pdf
000878342 8564_ $$uhttps://juser.fz-juelich.de/record/878342/files/Chen-Tao-2020_postprint.pdf$$yPublished on 2020-05-08. Available in OpenAccess from 2021-05-08.
000878342 8564_ $$uhttps://juser.fz-juelich.de/record/878342/files/Chen-Tao-2020_postprint.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-05-08. Available in OpenAccess from 2021-05-08.
000878342 8564_ $$uhttps://juser.fz-juelich.de/record/878342/files/Chen2020_Article_Requirement-drivenModel-basedD.pdf?subformat=pdfa$$xpdfa
000878342 909CO $$ooai:juser.fz-juelich.de:878342$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878342 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133935$$aForschungszentrum Jülich$$b1$$kFZJ
000878342 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131757$$aForschungszentrum Jülich$$b2$$kFZJ
000878342 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
000878342 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b4$$kFZJ
000878342 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000878342 9141_ $$y2020
000878342 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000878342 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000878342 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-14
000878342 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000878342 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878342 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFTW SYST MODEL : 2018$$d2020-01-14
000878342 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-01-14$$wger
000878342 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000878342 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000878342 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000878342 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000878342 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000878342 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000878342 920__ $$lyes
000878342 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000878342 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x1
000878342 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x2
000878342 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x3
000878342 9801_ $$aFullTexts
000878342 980__ $$ajournal
000878342 980__ $$aVDB
000878342 980__ $$aUNRESTRICTED
000878342 980__ $$aI:(DE-Juel1)INM-4-20090406
000878342 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000878342 980__ $$aI:(DE-Juel1)INM-11-20170113
000878342 980__ $$aI:(DE-Juel1)VDB1046
000878342 981__ $$aI:(DE-Juel1)PGI-4-20110106