001     878342
005     20250129092507.0
024 7 _ |a 10.1007/s10270-020-00797-3
|2 doi
024 7 _ |a 1619-1366
|2 ISSN
024 7 _ |a 1619-1374
|2 ISSN
024 7 _ |a 2128/25868
|2 Handle
024 7 _ |a altmetric:83209296
|2 altmetric
024 7 _ |a WOS:000531132800001
|2 WOS
037 _ _ |a FZJ-2020-02791
082 _ _ |a 004
100 1 _ |a Chen, Tao
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Requirement-driven model-based development methodology applied to the design of a real-time MEG data processing unit
260 _ _ |a New York, NY
|c 2020
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602587499_2920
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The paper describes a multidisciplinary work that uses a model-based systems engineering method for developing real-time magnetoencephalography (MEG) signal processing. We introduce a requirement-driven, model-based development methodology (RDD and MBD) to provide a high-level environment and efficiently handle the complexity of computation and control systems. The proposed development methodology focuses on the use of System Modeling Language to define high-level model-based design descriptions for later implementation in heterogeneous hardware/software systems. The proposed approach was applied to the implementation of a real-time artifact rejection unit in MEG signal processing and demonstrated high efficiency in designing complex high-performance embedded systems. In MEG signal processing, biological artifacts in particular have a signal strength that overtop the signal of interest by orders of magnitude and must be removed from the measurement to achieve high-quality source reconstructions with minimal error contributions. However, many existing brain–computer interface studies overlook real-time artifact removal because of the demanding computational process. In this work, an automated real-time artifact rejection method is introduced, which is based on the recently presented method “ocular and cardiac artifact rejection for real-time analysis in MEG” (OCARTA). The method has been implemented using the RDD and MBD approach and successfully verified on a Virtex-6 field-programmable gate array.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schiek, Michael
|0 P:(DE-Juel1)133935
|b 1
|u fzj
700 1 _ |a Dammers, Jürgen
|0 P:(DE-Juel1)131757
|b 2
|u fzj
700 1 _ |a Shah, N. Jon
|0 P:(DE-Juel1)131794
|b 3
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 4
|u fzj
773 _ _ |a 10.1007/s10270-020-00797-3
|0 PERI:(DE-600)2090971-8
|p 1567–1587
|t Software and systems modeling
|v 19
|y 2020
|x 1619-1374
856 4 _ |u https://juser.fz-juelich.de/record/878342/files/Chen2020_Article_Requirement-drivenModel-basedD.pdf
856 4 _ |y Published on 2020-05-08. Available in OpenAccess from 2021-05-08.
|u https://juser.fz-juelich.de/record/878342/files/Chen-Tao-2020_postprint.pdf
856 4 _ |y Published on 2020-05-08. Available in OpenAccess from 2021-05-08.
|x pdfa
|u https://juser.fz-juelich.de/record/878342/files/Chen-Tao-2020_postprint.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/878342/files/Chen2020_Article_Requirement-drivenModel-basedD.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878342
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133935
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131757
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOFTW SYST MODEL : 2018
|d 2020-01-14
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-01-14
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-14
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-14
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 1
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21