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Abstract — The paper describes a multidisciplinary work that uses 

a model-based systems engineering method for developing real-

time magnetoencephalography (MEG) signal processing. 

We introduce a requirement-driven, model-based development 

methodology (RDD & MBD) to provide a high-level environment 

and efficiently handle the complexity of computation and control 

systems. The proposed development methodology focuses on the 

use of System Modeling Language (SysML) to define high-level 

model-based design descriptions for later implementation in 

heterogeneous hardware/software systems. The proposed approach 

was applied to the implementation of a real-time artifact rejection 

unit in MEG signal processing and demonstrated high efficiency in 

designing complex high-performance embedded systems. 

In MEG signal processing, biological artifacts in particular have a 

signal strength that overtop the signal of interest by orders of 

magnitude and must be removed from the measurement to achieve 

high-quality source reconstructions with minimal error 

contributions. However, many existing brain-computer interface 

(BCI) studies overlook real-time artifact removal because of the 

demanding computational process. In this work, an automated real-

time artifact rejection method is introduced, which is based on the 

recently presented method “ocular and cardiac artifact rejection for 

real-time analysis in MEG” (OCARTA). The method has been 

implemented using the RDD & MBD approach and successfully 

verified on a Virtex-6 field programmable gate array (FPGA). 

Keywords - MBSE · SysML · real-time 

systems · MEG  ·artifact rejection · Neurofeedback 

 I Introduction 
In recent years, semiconductor technology has advanced 

continually; the scale of heterogeneous systems has been 

increasing dramatically and very different disciplines are involved 

[1]. However, an interconnected System of Systems (SoS) as a 

whole is much greater than the sum of the individual subsystems 

[2]. The interconnectivity and data transfer among the constituent 

systems can be extremely complex and hard to control [3]. 

Systems engineering (SE) is an interdisciplinary approach for 

handling the complexity of large and intricate designs by providing 

a development environment at a much higher level of abstraction.  

Systems engineering methods utilize a large degree of abstraction 

to visualize a system and relevant parts, which helps a developer 

focus on the aims of a system rather than the implementation 

details. It enables the change from technical to strategic 

development decisions because the cost of principal mistakes 

increases with design complexity [4]. Systems engineering is 

becoming increasingly widely applied over the years, and 

numerous modeling tools and methods are proposed to address the 

increasing complexity of today’s heterogeneous systems [3]. 

Model-based systems engineering (MBSE) has the advantages of 

low cost, time saving, and accuracy compared with traditional 

methodologies in embedded system design.  

We proposed a requirement-driven, model-based development 

methodology (RDD & MBD) as a further development of 

comprehensive methodology for functional design in digital 

systems [4]. It has been elaborated in our institute to address the 

problems of heterogeneous computation and control system design 

using System Modeling Language (SysML) [5]. The methodology 

is exploited in the design and implementation of a real-time signal 

pre-processing system for magnetoencephalography (MEG). This 

work is part of the development of the MEG-2.0 Real-Time project 

(MEG-RT 2.0) at Jülich Research Center (Forschungszentrum 

Jülich GmbH, Germany) aiming at developing a MEG real-time 

signal processing device as an add-on to the 248-channel whole-

head magnetometer MEG system (Magnes 3600WH) from 4D-

Neuroimaging. Applying system modeling to our design allowed 

comprehensive and thorough evaluation of actual design 

requirements and forward planning of possible technical solutions 

to find an optimum solution in advance. 

MEG is a non-invasive neuroimaging technique that investigates 

brain activities with high temporal resolution [6]. In modern MEG 

systems, an array of hundreds of low-temperature magnetometers 

is used to record components of the magnetic field produced by 

post-synaptic neuronal activities. The magnitude of the magnetic 

field components is in the range of a few tens to hundreds of 

femtotesla, while some noise and biological artifacts, such as 

ocular and cardiac activity, can be ten to hundred times larger [7]. 

These artifacts must be removed from the measured signals as they 

can lead to source reconstruction errors [7]. However, artifact 

rejection is computationally extremely demanding [8].  



 

 

In MEG studies, real-time MEG data analysis has become a topic 

of high interest recently and requires automatized real-time artifact 

removal [8],[9],[10]. One of the first real-time MEG source 

analyses was demonstrated in [11], but only including cardiac 

artifact rejection and capable for real-time processing of a reduced 

number of channels. In other studies, real-time MEG analysis is 

limited to certain frequency bands only [12],[13],[14],[15]. 

The system modeling work of MEG signal pre-processing was 

recently published in [3]. In the present paper, we optimized the 

previous models and expanded the system engineering by 

implementing a System-on-Chip (SoC) capable of performing real-

time artifact rejection. 

In the present work, based on the performed system modeling and 

analysis, we planned the target design to be developed and 

implemented on a single workstation platform combining field 

programmable gate array (FPGA) and graphics processing unit 

(GPU) co-processing boards containing a software framework for 

real-time MEG data analysis. 

The paper is structured as follows: Section II describes the systems 

engineering process of the target design together with the 

performance estimation. Implementation of MEG signal pre-

processing is discussed in Section III. Section IV is devoted to 

results and discussion. Finally, the conclusion is given in section V. 

II Model-Driven System Design 
We have introduced a RDD & MBD for real-time computation 

systems based on vendor-neutral specifications. The methodology, 

as further development of a comprehensive methodology for 

functional design in digital systems presented in [5], has been 

elaborated in ZEA-2 to address the problems of heterogeneous 

computation and control system design using SysML [4] and 

practiced in this work. The development workflow is plotted in Fig. 

2.1. It can be roughly divided into three steps: requirements 

formalization, functional modeling and structure allocation and 

partition. 

Requirements formalization begins with elicitating the 

expectations and constraints of different stakeholders. The 

acquired expectations and constraints are analyzed to obtain a 

formalized set of stakeholder requirements, which conveys a 

preliminary description of the system and shows its boundaries 

from the view of stakeholders. Then, the stakeholder requirements 

are further decomposed into system requirements by adding 

abstract functional specifications, which are grouped into three 

categories, i.e. Qualitative, Quantifiable, and Major operations, as 

shown in Fig. 2.1. The qualitative category mainly includes 

immeasurable requirements such as safety, continuous 

observability, and ease of operation. The quantifiable category 

captures measurable parameters and constraints. With the 

refinement of system models, some qualitative requirements may 

become quantifiable. The major operations category depicts the 

functionality of the system without specifying implementation 

details. Finally, feature derivation and decomposition are 

performed on system requirements to produce technical 

requirements. The formalized system requirements are further 

refined with sub-categories and requirement diagrams by adding 

implementation specifics. Full or near full coverage can be 

achieved by grouping and generalizing the requirements, and their 

subsequent classification and categorization. Requirements 

formalization is important both for principle decision-making in 

the development process as well as for building a validation plan 

for feature checking, and in a certain amount for verification: an 

implementation at any abstraction level must match the 

requirements of corresponding levels. 

 

 

Figure 2.1. Model-based system engineering for real-time systems (MBSE-
RT) workflow ([5]) 

 

In the second step of the workflow, system modeling is performed 

based on the specified system requirements and technical 

requirements. The corresponding system dynamic (behavior) and 

block structure are modeled in parallel, including Data modeling, 

i.e., data structure, data dependency, data exchange flows, and 

Methods and algorithm modeling.  

In the final step (structure allocation and partition), quantifiable 

requirements are imposed in the form of mathematical constraints 

to the relevant structural model elements to properly allocate them 

to relevant computation structures with predictable implementation 

parameters, such as performance, resource budget, and power 

consumption. Thus, the functions are partitioned and allocated to 

the corresponding computation hardware. This process is iterative, 

which indicates that the procedure may be repeated for each sub-

system performing refinement of the system on different 

abstraction levels [4],[5]. 

2.1 Requirements formalization 

The most important part of system modeling is defining 

requirements, because requirements are the foundation of system 



 

design, and the aim of system design is to satisfy the requirements 

[16].  

2.1.1 State the problem 

MEG enables studying the spatio-temporal dynamics of the 

electrophysiological interaction in the human brain non-invasively. 

With MEG, the brain in action can be investigated at very high 

temporal and relatively high spatial resolution depending on 

several factors (e.g., the strength and depth of the active sources) 

[17].  

To push MEG further towards a clinical diagnosis tool (e.g., pre-

surgery planning, early diagnosis, localization of epileptogenic 

zones, rehabilitation of stroke), results must be available during or 

soon after the investigation. The dynamics of the brain are 

extremely rich and it is possible to observe major effects by 

applying stimuli with respect to the state of the neuronal dynamic 

system [18], which is termed neuronal feedback. The ability to 

control in real-time provides new insights into the brain function of 

both normal and impaired brain processes. As indicated in [19], a 

time delay of >200 ms between brain activity, e.g., movement 

intention and the feedback output by the device, is clearly 

noticeable. In real-time computing, processing steps, including 

data acquisition, filtering, and artifact rejection, are designed in a 

pipelined structure. The latency is caused by the step with the 

largest delays. Therefore, signal processing systems with an overall 

constant delay of less than 200 ms are considered as real-time 

processing for neuroprosthetic control [19]. Brain–computer 

interfaces (BCI) utilizing neurofeedback stimulation hold great 

potential for neuroscience and therapy in neurology, but require 

adequate real-time analysis of ongoing brain responses. Therefore, 

the MEG-RT 2.0 project was proposed to address advanced MEG 

signal processing, including current source reconstruction, which 

will enable real-time neurofeedback applications. 

2.1.2 Stakeholder requirements definition 

It is important to identify the environment with which the system 

interacts. Use case diagrams describe the high-level functionality 

of the system and model interactions between users and the system. 

The use case diagram shown in Fig. 2.2 was created to define the 

boundaries of MEG-RT 2.0 and the operation contexts to which it 

is subjected. MEG-RT 2.0 may interact directly or indirectly with 4 

actors, as shown in Fig. 2.2, an Operator (a stick figure sign) who 

operates the system, an MEG Database (a rectangle with the 

keyword «actor»), an MEG Acquisition System (DAS), and a 

Subject (Patient) who interacts indirectly with the system through 

the MEG Acquisition System (DAS). MEG operators and subjects 

are identified as main stakeholders. Other indirectly related 

stakeholders include system developers, hospital staffs, etc.   

To improve the feasibility of MEG as a clinical diagnostic tool, the 

major expectations of stakeholders are to process MEG signals in 

real-time, thus enabling, for example, neurofeedback applications. 

Therefore, the MEG-RT 2.0 design, as an add-on to an existing 

data acquisition system (DAS), shall be capable of Perform RT 

MEG Preprocessing, Perform Offline MEG Study and 3D Source 

Localization, as shown in Fig. 2.2. Additionally, is further 

extended with functions including record online data, MEG 

measurements filtering, real-time and automated artifact rejection, 

etc. 

 

 

Figure 2.2. Use case diagram of MEG signal pre-processing 

 

We attempt to identify all MEG equipment stakeholders and 

collect as many requirements as possible. The expressed 

stakeholder needs and expectations are far from formalness and 

maturity. They need to be refined into stakeholder requirements. 

Tab. 2.1 gives an idea of the aspects for requirements elicitation. 

The given approach to requirement elicitation is based on 

distinguishing phases of a product life cycle and categorizing the 

questions that can be stated in each phase to computing and 

controlling systems. Fig. 2.3 shows the overall structure of 

decomposing the formalized stakeholder requirements into system 

requirements and then further into technical ones by adding more 

details. Consequently, the decomposition process enables 

requirement traceability through different layers. 

 

Table 2.1: Life-cycle requirement taxonomy ([5]) 

Life-cycle stage Requirement 

Concept Business goals, operational concept 

Design 

Development cost, development time, system 

configurability, system modularity, 3
rd

-party 

compatibility, legislation 

Manufacture 
Manufacture cost, manufacture time, production 

volume, legislation 

Deployment 
Ecosystem, deployment cost, deployment time, 

construction 

Operating Functional, reliability, exploitational 

Disposal 
Disposal cost, dismounting time, component 

reuse, component recycle 

 



 

 

2.1.3 System requirements specification 

System requirements, in the conceptual sense, form the elementary 

basis in system development and determine the capability, function, 

or performance the system has to achieve [1],[20]. The system 

requirements for MEG signal processing need to be captured and 

traced in the system model. The step described in section 2.1.2 

contains a set of stakeholder requirements that result in more 

specific system ones. First, the more refined system requirements 

are unstructured and put in a folder named Unqualified. Then, we 

formalize the system requirements in three categories: Functional, 

Qualitative, and Quantifiable. Fig. 2.3 shows the top-level package 

structure that accommodates these requirement categories. 

Functional requirements represent specific capabilities and major 

operations in the design of MEG-RT 2.0, including maintenance 

mode and major mode. We focus on major mode, including data 

decomposition and artifacts rejection. Qualitative requirements 

refer to unmeasurable stakeholder needs, including operator 

interface in Python, real-time operation, etc. Quantifiable 

requirements address properties, which can be measured and 

quantified, including the number of channels, the sampling rate, etc. 

2.1.4 Technical requirements specification 

The system requirements are elaborated further by the breakdown 

into technical requirements with implementation details.  

The top-level system model for MEG-2.0 RT was developed in the 

present study. As the approach steers down to the modeling and 

design of lower levels, this study only concentrates on the design 

of real-time artifact rejection using   OCARTA (ocular and cardiac 

artifact rejection for real-time analysis in MEG) in the MEG-RT 

2.0 workflow. This is because previous studies either neglected or 

simplified artifact rejection [9], [21].  

This section describes the breakdown of the system requirements 

into a cohesive set of technical requirements [22]. All essential 

requirements for MEG signal processing are clearly described so 

that they can be satisfied and traced by the system design. Fig. 2.4 

depicts requirement decomposition and the initial derivation of 

requirements in MEG signal pre-processing. The stakeholder 

requirement MEGPreprocessing is separated into more detailed 

system requirements. The technical requirements of data 

processing methods are derived from an analysis of each functional 

requirement of the system level. In addition to relationships among 

requirements, traceability from system requirements to behavioral 

and structural elements is also established. 

2.2 System structure modeling 

System static structure models the blocks of which the system is 

composed. Structural modeling includes four steps: Model the 

Problem Domain, Define Blocks, Allocate Requirements to Blocks 

and Define Ports [16].  

2.2.1 Domain modeling 

Domain modeling describes real-world (problem domain) entities 

and the relationships between them, which models the system in 

the context of its environment. Fig. 2.5 shows a domain model for 

MEG signal processing. The operation domain model defines a set 

of abstractions based on real-world elements external to the system, 

including environment noise, clinical diagnosis and neurofeedback 

[16].  

The problem domain model is intended to depict the “system” in 

which MEG-RT 2.0 operates. Fig. 2.5 shows the systems that 

interact together with MEG-RT 2.0 [16]. The OperationDomain is 

defined as a system containing other subsystems, including the 

humans (Operator, Subject, etc.) who directly or indirectly interact 

with the system, external systems (DAS, Filter, etc.) that 

communicate with the system, and environmental elements 

(EnvironmentNoise, etc.) that could impact the system. The 

operational domain model efficiently provides an overview of the 

system and how it operates. Details of the OperationDomain 

system are elaborated in the OperationDomain BDD shown in Fig. 

2.5. 

2.2.2 System architecture of MEG signal pre-

processing 

The SysML block definition diagram (BDD) is used to display 

various kinds of elements (blocks, actors, value types, interfaces, 

etc.) and their structural relationships (associations, generalizations, 

dependencies) about the MEG pre-processing unit [23]. As an 

example, Fig. 2.6 shows the child block definition diagram of 

MEGPreprocessing block in Fig. 2.5 in order to highlight the 

details. The composite association for the MEG-RT 2.0 block is 

shown: the MEGSignalPreprocessing block is composed of four 

main sub-blocks: InitialTraining, DataDecomposition, 

ArtifactIdentification, and DataCleaning. Additionally, value 

properties (e.g. meg_raw: MEGArray) are listed in the second 

compartment of a block, which hold parameter values in MEG 

signal processing. The flow ports are listed in the third 

compartment of the MEGSignalPreprocessing block. The flow 

ports model the data that flow in and out of the 

MEGSignalPreprocessing block, which are detailed in the 

corresponding IBD. In the third compartment of part properties are 

operations of the relevant block, which represent behaviors the 

blocks perform. 

In addition to relationships among requirements, traceability from 

data requirements to Value Type blocks is also established. 

2.2.3 System internal structure 

The internal block diagram (IBD) is a complementary view to the 

BDD. Fig. 2.7 shows the IBD of MEGSignalPreprocessing block 

in Fig. 2.6. It specifies the internal structure of 

MEGSignalPreprocessing with respect to how its parts are 

interconnected [22],[23]. It conveys the part properties of the 

MEGSignalPreprocessing block and the related connectors. 

Moreover, it is allowed to specify multiple levels of nested parts in 

a single view by showing part symbols within part symbols, e.g., 

the it:InitialTraining part property [22],[20]. 



 

 

 

Figure 2.3. Requirement hierarchy of MEG-RT 2.0 (excerpt) 

 

 

Figure 2.4. Requirement decomposition of MEG signal pre-processing (excerpt)



 

 

 

Figure 2.5. Domain model of MEG signal processing 

 

 

Figure 2.6. Top-level block definition diagram 

 

2.3 System behavior modeling 

Behavior models visualize, specify, construct, and document the 

dynamic behaviors of the system during the interactions with users 

and the environment [16]. The adopted SysML behavioral 

diagrams in this study include activity diagrams, state machine 

diagrams, and sequence diagrams. State machine diagrams 

describe event-driven behaviors that are not user-centric. Activity 

diagrams convey system behaviors in terms of the flow of inputs, 

outputs, and control. Sequence diagrams detail use cases and 

model interactions among parts of a block. 

The MBSE toolkit used in this study supports the allocation of 

requirements to behavioral elements using simple drag-and-drop to 

create traceability from requirements to behaviors in the system 

model [16]. 

2.3.1 System behaviors of MEG signal pre-processing 

Activity diagrams are adopted to specify the MEG data pre-

processing workflow using a controlled sequence of actions that 

transform inputs (matter, energy, or data) to outputs [22],[23]. Fig. 

2.8 shows the top-level activity diagram for MEG signal pre-

processing. The initial node (a small, filled-in circle) ActivityInitial 

marks the starting point of MEG Signal Preprocessing activity. 

Because data decomposition and artifact identification are 

performed in parallel to the data cleaning, the pre-processing 

workflow has two data streams. One data stream is used to update 

the demixing matrix and the other is used to synchronously reject 

artifacts in real-time. Therefore, the control token on the initial 

node concurrently triggers the execution of ReadData activity and 

DemixParams action via an outgoing control flow (a line with an 

arrowhead) and a fork node. Furthermore, an object node models 

the input or output parameters of an action or activity. The notation 

for an object node is a small rectangle attached to an action or 

activity with the object node name and data type floating beside it, 

e.g., ReadData activity has one input parameter Meg_raw and one 

output parameter Meg_raw of data type MEGArray. When 

ReadData activity is executed, the output parameter Meg_raw is 

transmitted to Filter activity by an object flow (a solid line with an 

arrowhead). InitialTraining activity, DecomposeData activity, and 

IdentifyArtifacts activity are enabled in a similar manner. When the 

IdentifyArtifacts activity is executed, the output parameters flow to 

dp: DemixParams send signal action (a convex pentagon shaped 

like a signpost), a specialized action that asynchronously sends 

matter, energy, or data [23]. DemixParams accept event action (a 

rectangle with a triangular section missing on one side [22]) waits 

for the parameters of dp: DemixParams send signal action to arrive 

asynchronously. A send signal action and an accept event action 

work together to model communication between two concurrent 

work flows. Then the following activities are executed. Finally, the 

activity final node ActivityFinal indicates the termination of the 

entire activity. 

2.3.2 System state transitions of MEG signal pre-

processing 

State machine diagrams describe system behaviors in terms of 

operating states, triggering events and system actions. 

Fig. 2.9 shows the top state machine diagram for MEG signal pre-

processing. It starts with an initial pseudostate, a small and filled-in 

circle named GInitial. Then a transition (a solid line with an 

arrowhead) leads to Offline state. The notation of a state is a round-

cornered rectangle, which displays state name and other 

information. When the guard Enable MEG-RT 2.0 evaluates to be 

true, it transits to the composite state Online. Again, the composite 

state starts in an initial pseudostate, then transits to Initialization 

state where the system performs self-check and initialization 

process. After that, the transition reaches Training state, where cost 

functions of artifacts and spatial template are calculated 

concurrently. Afterwards the transition goes to the composite state 

Active where MEG data decomposition and data cleaning are 

performed in parallel. If an error occurs to any of the above 

mentioned states, the state machine enters the state Fail. and then 

one outgoing transition from the join node goes through the 

following states and ends in a final state (a small, filled-in circle 

surrounded by a larger circle) until GFinal. 

 



 

 

Figure 2.7. IBD of MEGSignalPreprocessing 

 

 

Figure 2.8. System activity diagram of MEG data pre-processing 



 

 

2.3.3 System interactions of MEG signal pre-

processing 

Sequence diagrams depict the interaction between system 

components as a sequence of message exchanges [22]. As plotted 

in Fig. 2.10, the structural components of MEG pre-processing are 

represented by lifelines (a rectangle attached with a dashed line), 

InitialTraining, DataDecomposition, ArtifactIdentification, and 

DataCleaning. The dashed line represents the relevant lifetime of 

the structural component. Lifelines are participants involved in an 

interaction that interact with each other by exchanging messages. 

In InitialTraining, the first 12 s of the recording of each 

measurement are used as a training data set to produce initial 

parameters, including CalculateCostFunction, DecomposetheData, 

IdentifyArtifacts, and UpdateArtifacts [10]. In real-time MEG 

signal pre-processing, each measurement is split into segments 

(e.g., 12 s each) and the segments are processed separately [8],[10]. 

As mentioned earlier, the processing of one segment is based on 

the prior calculations of the last segment, as the data segments 

overlap within a range. Therefore, based on the prior results 

obtained from InitialTraining, the design forms a 2-stage pipeline 

structure, with DataDecomposition and ArtifactIdentification being 

the first stage and DataCleaning the second stage. In addition, it is 

also permissible for a lifeline to send messages to itself, as the case 

DataDecomposition shows. A constrained independent component 

analysis (cICA) approach is used to decompose MEG data into 

statistically maximal independent components, including updating 

data with prior results (UpdateRawData), transforming the data 

with the cost function (FitSigmoid) and then computing the 

demixing matrix iteratively (ICALearning) [10]. SysML supports a 

mechanism termed combined fragments to model complex control 

logic of interactions. The control logic type is defined by a string 

(an interaction operator) that appears in a pentagon in the upper 

left corner of the combined fragment rectangle [23]. The many 

computation iterations of DataDecomposition are modeled with a 

loop operator loop (0, 200), as shown in Fig. 2.10. The loop stops 

when the demixing matrix converges. When raw data are 

successfully decomposed into independent components, 

ArtifactIdentification identifies cardiac components based on 

CTPS (cross trial phase statistics) (IdentifyCardiacArtifact (CAIdx)) 

and ocular components based on a spatial and temporal correlation 

(IdentifyOcularArtifact (OAIdx)) [7],[10],[23]. Finally, 

DataCleaning rejects artifacts components (RemoveArtifacts 

(Weights_clean)) and back-transforms data to MEG space 

(Backtransform(Meg_clean)). A par operator is used to indicate 

that DataDecomposition and ArtifactIdentification are done in 

parallel to DataCleaning. 

2.3.4 System consistency 

“A diagram of the model is never the model itself; it is merely one 

view of the model” [23]. Different diagrams were created to show 

the system from different perspectives. The established MEG 

model is verified by model execution. The accuracy and integrity 

of the model is checked by visual examination of the model 

execution.  

The consistency between the system behavioral diagrams is 

assured by the MBSE toolkit. Every action on an activity diagram 

must have at least one corrsponding messsage on one of the 

sequence diagrams. Each messsage on a sequence diagram must 

appear at least once on one of the activity diagrams. All actions 

and messages on the behavioral diagrams are realized by the 

definition of ports and associated interfaces on structural diagrams. 

The correct behavior of the structural diagrams in response to the 

inputs is verified by execution and visual check of the 

corresponding state-based behavior. 

To assure that all the defined functional and non-functional 

requirements are covered, traceability links are established by 

allocating requirements to the model elements.  

 

 

 

Figure 2.9. System state machine diagram of MEG data pre-processing 



 

 

 

Figure 2.10. System sequence diagram of MEG data pre-processing 

 

2.4 Structure allocation and partition 

2.4.1 Constraints and parametrics definition 

SysML parametric models include constraint blocks and 

parametric diagrams, which together impose mathematical 

relationships on the values of the design.  

In Fig. 2.11, constraint blocks contain properties to specify the 

input and output parameters. Additionally, scripts are embedded in 

the constraint blocks to depict the executable components. 

However, Fig. 2.11 does not specify how the constraint blocks and 

expressions are connected to each other to accomplish a complex 

computation; this is done by a parametric diagram [23]. 

2.4.2 Parametric diagrams and performance analysis 

A parametric diagram is a restricted type of IBD that connects 

instances of primitive constraint blocks to transform a set of inputs 

into outputs [16] [23].  

 

 

 

Figure 2.11. Constraint blocks of MEG signal pre-processing 

 

Constraints are expressed as equations or inequalities whose 

parameters are bound to the properties of the design [22]. A 

constraint block is a special kind of block used to encapsulate 

constraint expressions [23]. Constraint blocks have two main 



 

 

features: constraint parameters and a constraint expression to 

impose equations or inequalities. The BDD in Fig. 2.11 shows that 

the MEGSignalPreprocessing constraint block is composed of the 

four simpler blocks to build a more complex computation. In the 

constraint blocks defined by the modeling toolkit, a constraint 

parameter has the notation of a small rectangle floating inside the 

block. A constraint expression is defined by adding JavaScript, 

Jscript, or VBScript scripts to a block, which provides the 

underlying mathematical foundation for further analysis or 

simulation.  

MEGSignalPreprocessing uses these computations mainly to 

decompose MEG raw data into independent components for 

subsequent identification and rejection of artifacts. 

The mathematical relationships in SysML parametric models can 

specify the physical properties (e.g., equations, inequalities, or 

parameter bindings) or the non-functional properties (e.g., 

performance, speed, power dissipation, or reliability) of a system. 

Fig. 2.12 shows a parametric diagram for the constraint block 

DataDecomposition from Fig. 2.11, where the DataDecomposition 

is depicted as the frame of the parametric diagram. The constraint 

properties in the diagram are usages of the constraint blocks nested 

within DataDecomposition. The parameters of the constraint 

properties are bound to each other and to the parameters of 

DataDecomposition. Together, they show the computation flow of 

the data decomposition process in MEG signal pre-processing. 

Specifically, Fig. 2.12 defines precisely how the sub-modules of 

MEG data decomposition are related. These relationships model 

the engineering physics and behaviors of the data propagation 

between the ports of the components within the ICA subsystem. 

Parametric constraints represent equations addressing the inputs 

and outputs. Constants are given in the form of value properties. 

Based on the established models and analysis, the design is first 

partitioned to a certain technological basis to best suit system 

requirements and constraints. The development of MEG-RT 2.0 is 

based on a single workstation platform combining FPGA and GPU 

co-processing boards, including a software framework for real-

time MEG data analysis. The project covers developments for data 

pre-processing steps utilizing a Xilinx Virtex-6 FPGA board as 

well as the integration of hardware modules connecting the 

software framework of the workstation. The GPU is connected to 

the FPGA for exchanging intermediate data. Further 3D 

reconstruction and multi-modal visualization (i.e., MEG and 

magnetic resonance imaging [MRI] data) takes place in the GPU. 

As the work focuses on real-time artifact rejection, performance 

analysis is carried out on the MEG signal pre-processing unit. 

Given the parametric analysis and the deduced data-stream models, 

the MEG signal pre-processing can be quantitatively estimated for 

performance. In the depicted SE models, the design performance 

depends on the amount of data exchanged through the modules.

 

 

Figure 2.12. Parametric diagram of DataDecomposition 



 

 

Thus, the performance is assessed by calculating the data traffic 

from the top module to lower level modules.  

The present study uses a 16-bit fixed-point numeric. One bit is 

used for the sign, one bit for the integer part, and 14 bits for the 

fractional part. Even though the double precision floating point is 

of higher precision, fixed-point number representation is more 

practical for hardware designs. The disadvantages of realizing 

floating-point units on FPGA are high resource and high clock 

frequency demands. Although previous studies have implemented 

floating-point computation architectures on FPGAs, very few 

practical applications exist [24]. On the other hand, modern 

FPGAs are equipped with numerous hardwired fixed-point digital 

signal processors (DSPs) suitable for fixed-point arithmetic 

realization, which potentially improves performance and power 

efficiency. Convergence has been reported in [24],[25],[26],[27] 

for the FPGA implementations of ICA and deep neural network 

training using 16-bit fixed-point computation units. The rough 

precision of the 16-bit fixed-point numeric can reach 0.000030518. 

Before the computation, normalization is performed on the MEG 

data to avoid overflow.  

According to the data specification in Tab. 2.2, the volume of 

MEG data is exceedingly large for FPGA on-chip BRAM (block 

random access memory). Thus DDR3-SDRAM external memory is 

used to store MEG data and intermediate results of large volume. 

The Xilinx DDR3 IP core is utilized to instantiate and control the 

DDR3 RAM with the read/write width of 256 bits and clock 

frequency of 400 MHz.  

The hardware resource model is based on counting of clocked 

memory (in bits) required for allocation of local data aggregates of 

the FPGA. Although it is not intended to yield a precise flip-flop 

budget for each processing unit of the FPGA implementation, it 

can predict each design module’s order of complexity with a high 

degree of certainty. Tab. 2.2, Tab. 2.3, Tab. 2.4 and Tab. 2.5 

presents the prognostic resource model computed for different 

modules of the MEG signal pre-processing system. 

Tab. 2.2 shows the data traffic of different sub-modules in 

principal component analysis (PCA). It mirrors the application 

performances in different sub-modules depending on the data flow 

in the processing units. Tab. 3.1 also specifies the processing time 

(data in brackets estimate the processing time with an operating 

frequency of 100 MHz). 

The PCA computation is separated into four steps. The data traffic 

bottleneck is the estimation of eigenvalues, where the calculation 

requires a number of iterations. The intermediate results of the 

EigenAnalysis and PCMatrix modules are small-volume and stored 

in the the block random access memory (BRAM) on FPGA for 

speeding up the computation by the short memory access time. It is 

important to note that Centre and COV modules involve 

processing very large dimension matrices. The input and output 

streams of the two modules have external SDDR3 as the memory 

bank, which adds to the processing time. Therefore, the upward 

and downward data streams of the two modules are split into three 

channels operating in parallel. 

 
Table 2.2: Data traffic of PCA for performance estimation and 

total percentage of Virtex-6 flip-flop memory (in memory words) 

Module Centre COV EVD PC Percentage 

Data 

traffic 

3,027,336 

(60.54 

ms) 

3,027,336 

(375.36 

ms) 

61,504 

(152.52 

ms) 

3,033,536 

(75.68 

ms) 

41% 

 
 

Tab. 2.3 specifies the traffic volume of different sub-modules in 

ICA and the application performances in different sub-modules are 

estimated based on the data flow in the processing units. The table 

2.3 also calculates the processing time (data in brackets estimate 

the processing time with an operating frequency of 100 MHz). 

The ICA computation is separated into three modules: data update, 

judge, and learning. The data traffic bottleneck is the learning 

module, where exponential computation and multiple matrix 

calculations are required. The intermediate results have small data 

volume and are stored in the block RAM on FPGA for speeding up 

the computation by the short memory access time. Prior knowledge 

from the previous data segment is incorporated during the 

computation. The measured signal mixtures are separated into 

underlying sources within one iteration, which greatly speeds up 

the decomposition. 

 

Table 2.3: Data traffic of ICA for performance estimation and total 

percentage of Virtex-6 flip-flop memory (in memory words) 

Module Data update Judge Learning Percentage 

Data 

traffic 

305,775 

(8 ms) 

625  

(0.006 ms) 

305,775 

(158.68 ms) 

68% 

 

Tab. 2.4 shows the data traffic of different sub-modules in CTPS. 

Application performances in different sub-modules are presented 

based on the data flow in the processing units. Meanwhile, the 

processing time is analyzed (data in brackets specify the 

processing time under the operating frequency of 100 MHz). 

The CTPS computation is divided into three modules: Hilbert 

transform, cumulative distribution function (CDF) estimation, and 

the Kuiper test [7]. The data traffic bottleneck is the Kuiper test, 

where exponential computation is involved. The intermediate 

results have small data volume and are stored in the block RAM on 

FPGA for speeding up the computation by the short memory 

access time. 

 



 

 

Table 2.4: Data traffic of CTPS for performance estimation and 

total percentage of Virtex-6 flip-flop memory (in memory words) 

Module Hilbert 

transform 

CDF 

estimation 

Kuiper 

test 

Percentage 

Data 

traffic 

509 

(0.37 ms) 

509 

(0.15 ms) 

509 

(0.43 ms) 

11% 

 

As shown in Tab. 2.5, the data traffic density of temporal and 

spatial correlation design is much lower, as the computation is 

simple and only involves addition, vector–vector multiplication, 

and division. Thus, memory access occupies most of the 

computation time. 

 

Table 2.5: Data traffic of temporal and spatial correlation for 

performance estimation and total percentage of Virtex-6 flip-flop 

memory (in memory words) 

Module Covariance Variance Division Percentage 

Data 

traffic 

12206 

(0.21 ms) 

12206 

(0.18 ms) 

16 

(0.08 ms) 

4% 

III Implementation of MEG Signal Pre-

processing 
Based on the behavioral models, HDL code can be generated 

automatically, which is often sufficient for direct implementation 

in hardware. The algorithms covered in artifact rejection were 

implemented by modifying the generated Verilog hardware 

description language (HDL) code. Each algorithm is described 

briefly, and then the implementation process is detailed. 

3.1 Code generation 

MEG signal pre-processing mainly involves matrix–matrix 

multiplications or matrix–vector multiplications, for which parallel 

computation is optimal [10]. For the purpose of acceleration, 

reconfigurable hardware solutions such as FPGA are currently 

valuable approaches for tackling the computation complexity.  

Enterprise Architect well supports code generation and reverse 

engineering. We generate HDL code from MEG-RT 2.0 state 

machine diagrams, which describe system behaviors with respect 

to operating states, triggering events and system actions [16]. 

For generating code from behavioral models, the state machine 

diagrams are contained within a class diagram. Then, two triggers 

(reset and clock) are added and associated with the top-level state 

machine diagram. Meanwhile, the triggers are associated with the 

component’s ports in the class diagram. After the preliminaries 

above, the desired HDL code is generated. The final step is to feed 

the generated code into an event-driven simulator and verify the 

design. 

3.2 Implementation 

Based on the behavioral models, HDL code can be generated 

automatically, which is often sufficient for direct implementation 

in hardware. The algorithms covered in artifact rejection were 

implemented by modifying the generated Verilog HDL code.  

3.2.1 Implementation of PCA 

PCA is one of the most commonly used techniques to decrease the 

dimensionality of a dataset while retaining most of the information 

by means of its variance [28], which reduces the computational 

complexity of ICA. PCA maps the original data into a new set of 

orthogonal basis vectors, where the components are stored in a 

decreasing order of variance [29]: The first axis (first principal 

component) accounts for the greatest data variance of the original 

data set while the last one the least data variance. In terms of MEG 

data processing, the first 25 principle components are chosen for 

data processing as they explain more than 95% of the data variance. 

Therefore, the design shall be adaptable to different MEG systems 

with different channel numbers. 

PCA implementation is detailed here as it has been introduced in a 

previous publication [30]. 

3.2.2 Implementation of ICA 

In this study, the natural-gradient version of Infomax ICA [31] is 

chosen for hardware implementation. It can be learned from Eq. 

3.1 that not only is the convergence speed of    increased, but 

also that the computation of         is avoided, which facilitates 

the FPGA realization. 

Typically, ICA-based signal decomposition is performed on the 

whole data set at once. In our experiments, this would translate to 

about 170,000 time samples (see Section 4.1). To realize real-time 

MEG data processing, data are split into much smaller segments 

for analysis. For data decomposition, we use a sliding window with 

a window width of 12 s and 10 s overlap. Please refer to [8] for a 

detailed description on time window length selection and relevant 

effects.  

         , and 

                                      

                     (3.1) 

where   is the segment size,   is the learning rate whose initial 

value is     . In general, demixing matrices are estimated for 

segments separately, i.e. whenever the estimation of    is 

completed, the next demixing matrix        is estimated on basis 

of the last 12 seconds. During the estimation of       ,    is used 

for data decomposition. In the computation process,       is 

seen as a constant matrix. Based on the features of FPGA design, 

the Infomax implementation can be divided into input module, 

learning module, matrix multiplication module (data update), judge 



 

module and output module, among which learning module is the 

core of the design. The learning module initializes demixing matrix 

  and performs the learning iterations in Eq. 3.1. The workflow of 

Infomax is illustrated in Fig. 3.1. 

The input module reads out segments of data from the memory. 

The chosen sliding window with a window width of 12 s translates 

to 12,206 data points. After reading the 12,206 data points, the 

output of the input module is set to zero and waits for the trigger 

signal of the learning module. 

The learning module performs the learning process of Infomax 

ICA and computes the demixing matrix   of the data segments. 

The identity matrix was chosen as the initial matrix when 

calculating the demixing matrix    of the first data segment. The 

previous demixing matrix                     is used as the 

initial matrix to compute the demixing matrix           

        of the current segment, where   is the number of data 

segments. Then, the demixing matrix is transmitted to the matrix 

multiplication module for data update. 

 

 

Figure 3.1. Architecture of data decomposition 

 

The matrix multiplication module multiplies the MEG data 

segment with the corresponding demixing matrix   and transmits 

the demixing matrix   to the judge module. 

The judge module checks the convergence of the demixing matrix 

 . In the case of convergence, the computation stops, otherwise 

the computation is repeated. 

3.2.3 Implementation of CTPS 

The first step of CTPS is to transform the MEG signals into phase 

space. Our design adopted the Hilbert transformation to extract 

phase information. Then, the phase distribution is compared with a 

uniform distribution using the Kuiper test [32] to identify the 

components related to cardiac artifacts. 

The Kuiper test is a statistical test that refines the well-known 

Kolmogorov-Smirnov test (K-S test) [33]. The Kuiper test is the 

adaption of the K-S test for cyclic problems. It quantifies the 

probability that two data sets are samples of the same distribution. 

For analyzing event-related phase-locked responses, the cross-trial 

cumulative phase distribution is compared with a cumulative 

uniform distribution [34]. The Kuiper test algorithm was realized 

in Verilog using the Xilinx intellectual property (IP) core library to 

ease the implementation of blocks as memories or arithmetic 

operators. First, the CDF of the phase samples is estimated, as 

shown in Fig. 3.2. After the CDF of the phase values is calculated, 

it is tested against a uniform distribution by the operations of 

subtraction and the maximum search. 

3.2.4 Implementation of temporal and spatial 

correlation 

Ocular artifacts are automatically identified by estimating the 

Pearson linear correlation between each independent component of 

the MEG signal and the reference electrooculogram (EOG) signal. 

As columns of the mixing matrix contain the spatial information, it 

is also taken into account by calculating the Pearson linear 

correlation between the template and the field maps as extracted by 

ICA [10]. The implementation mainly involves covariance and 

variance calculation, which is simple and is not presented here. 

 

 

Figure 3.2. Architecture of CDF estimation 

IV Results and Discussion 
 

Cost analysis of resource and performance was carried out to 

assess the efficiency of the proposed prognostic (pre-

implementation) model. The design was implemented on a Virtex-

6 FPGA (running at 100 MHz) by optimizing the Verilog HDL 

code automatically generated by Enterprise Architect for further 

synthesis using the Xilinx ISE 14.1 tool. Questasim 10.5c and 

Xilinx Chipscope Pro 14.1 were used to validate the quantitative 

requirements and functional correctness. The test MEG data set 

was recorded with a whole-head magnetometer system (Magnes 

3600WH, 4D-Neuroimaging) [8]. The configurable hardware 

design of MEG signal pre-processing was carried out by extensive 

parameterization of functional blocks to be generally applicable to 

other MEG systems. 

4.1 Experiment data set 

The design was evaluated using MEG data from a 248-channel 

whole-head magnetometer system (Magnes 3600WH, 4D-

Neuroimaging).  

During the experiments, MEG signals from five subjects were 

measured. The experiment setup is to record neuromagnetic field 



 

 

changes due to finger tapping cued by auditory stimulation. The 

auditory stimulations were 50-ms sinusoidal tones (single clicks) 

of 1000 Hz [10]. The dataset is chosen because the experimental 

paradigm studies the auditory cortex, a well-known area in the 

brain. Detailed information on the dataset is listed in Tab. 4.1. 

Table 4.1: Test MEG data details ([10]) 

sampling rate 1017.25Hz 

bandwidth 0.1-400Hz 

number of presented stimuli 120 

stimulus frequency 1000 Hz 

stimulus duration 50 ms 

inter stimulus interval 2.0 ± 0.5 s 

number of data samples (mean) 168098 

experiment duration (mean) 165 s 

  

4.2 Results and analysis of ICA design 

4.2.1 Results of ICA design 
For design evaluation, the 25 channels of mixed signals are stored 

in the block RAM on FPGA. Each channel consists of 12,206 data 

points. The ICA modules decompose the mixed signals into 

relevant components. 

Tab. 4.2 shows the summary of synthesis for Infomax ICA 

implementation, which correlates highly with the results of the 

prognostic models created for system-level modeling. The 

reconfigurable hardware designs of Infomax ICA in this work are 

parameterized and easily adaptable to data of different dimensions, 

which results in different resource utilization. 

 

Table 4.2: Resource utilization of ICA design 

Item Occupied Available Percentage 

Number of slices 34,128 56880 60% 

Number of DSP blocks 311 576 54% 

 

 

The proposed Infomax ICA hardware design is driven by a system 

clock of 100 MHz; the target MEG data has a window size of 12 s 

and a sampling rate of 1017.25 Hz. The first 12 s of the data from 

each measurement was used as training data set. The data segments 

overlap within a time range of 10 s, so the dynamics of the 

underlying sources in two overlapping data segments are 

analogous. The processing of one segment is based on the prior 

calculations of the last segment, which speeds up the 

decomposition, and the signal separation can be done in one 

iteration. The maximum hardware computation time is 17,326,971 

clock cycles. Thus, the throughput is 6103 points/s. Therefore, the 

implemented Infomax ICA architecture can support the real-time 

requirement of our applications well. 

4.2.2 Result analysis and discussion 

The requirements of ICA design are first traced to different models 

to ensure that all requirements are covered in system modeling. 

The requirements (DataDecomposition and Method) of ICA design 

are linked to model elements, including a state machine model 

InfomaxICA, a use case diagram ICA, and a sequence diagram 

DataDecomposition, which are colored yellow in Fig. 4.1. Various 

other traced model elements are not listed for the readability of the 

figure. Afterwards, the ICA requirements are realized and verified 

on an FPGA board. The implemented (covered) requirements are 

colored green in Fig. 4.1. Final realization is traced to relevant 

requirements to ensure the requirement coverage of SE. 

 

Many studies have been devoted to ICA hardware implementation. 

Hardware realizations of ICA algorithms are challenging with 

respect to resource, flexibility, and speed. Many studies on the 

real-time implementation of ICA have targeted data of much lower 

channel and sample numbers. Higher channel and sample numbers 

increase the computation time for ICA processing because of the 

greater computational complexity. In [24],[35],[36], the FPGA 

implementations can only achieve 2-channel ICA processing for 

speech signals. In [37],[38],[39], the proposed hardware 

architectures can perform ICA processing with a channel number 

of 4. In [40],[41],[42], 8-channel ICA implementations are 

reported. In [43],[44], the ICA implementation can achieve 16-

channel processing. Thirty-two–channel convolutive ICA is first 

implemented on FPGA and applied to real-world signals in [45]. 

However, the post-layout results of the design are not reported. 

Another 32-channel ICA implementation on FPGA used for 

electroencephalogram (EEG) signal processing is reported in [46], 

but the implementation information is currently not accessible. In 

the present study, the proposed hardware implementation of 

Infomax ICA can decompose MEG signals with a channel number 

of 25, which is parameterized and can be scaled to applications 

with channel numbers > 25. 

Speed is also an important criterion for evaluating a hardware 

implementation of ICA. The ICA design implemented in [36] and 

[45] works at the operating frequencies of 12.3 MHz and 50 MHz, 

respectively. The implementation in [36] is as short as 0.003 s for 

lower-dimension ICA computation, while the realization in [45] 

takes >60 s for adaptive noise canceling. A parallel ICA is 

implemented on FPGA in [37],[38]: it has the operating frequency 

of 20.2 MHz used for hyperspectral image analysis. The 4-channel 

Infomax ICA is implemented on FPGA in [39] with the operating 

frequency of 68 MHz applied to EEG signal processing. In our 

work, the operating frequency of the proposed ICA hardware 

architecture is 100 MHz with the computation time of 1.72s. 

The present work has greater resource consumption than previous 

studies, as the existing implementations are only for signal 

processing of much lower channel and sample numbers. The 

processing capacity in the present study can be up to 25 channels 

and 12,206 samples, which are both higher than previous 

implementations. Additionally, our design can process data with 

dimensions larger than 25 × 12,206, as it is adaptable.



 

 

 

Figure 4.1. Requirement coverage of ICA design 

 

4.3 Results and analysis of artifact 

rejection design 

4.3.1 Results of artifact rejection design 
Artifact components are identified and removed from recorded 

signals using CTPS. The design is evaluated using the MEG data 

which is windowed around the latency of the R-peak of the ECG 

signal using a window size of 500 ms. Each data window consists 

of 508 data points, which is of small volume and buffered in the 

block RAM on FPGA. The CTPS modules first transform the data 

into phase space using Hilbert transform, and then identify the 

cardiac components. 

Ocular components are identified by computing the Pearson linear 

correlation between the MEG component and the reference EOG 

signal and also between the template   and the field maps. 

Mathematically, the calculations mainly involve divisions and 

vector–vector multiplications.  

Tab. 4.3 shows summary of synthesis for the artifact rejection 

implementation. There is a strong correlation between the resource 

prediction model in Tab. 3.3 and Tab. 3.4 and the synthesis results. 

Meanwhile, it is difficult for the Resource Model to obtain the 

absolute accuracy in prediction, as the results of synthesis depend 

on the optimization algorithms, e.g., logic replication, typically 

exploited by modern synthesis tools for improving the timing 

characteristics of synthesized designs. 

The proposed artifact rejection hardware design is driven by a 

system clock of 100 MHz; the data epochs (segments) during 

CTPS computation are buffered in on-chip BRAM, which reduces 

the memory access time. For ocular artifact rejection, the data 

channels are pre-fetched, which improves the data access speed. 

There is no data dependency between the covariance calculation 

and the computation of the standard deviations, which largely 

improves the computation parallelism. The design adopts the 

pipeline structure, further enhancing the throughput. Thus, the 

computation modules are fully occupied. The data is processed by 

one module, while the results are transmitted to the next unit for 

further computation in every clock cycle. Additionally, the 

computations are designed to overlap with the memory access to 

make best use of the pipelined architecture. The execution time is 

measured for each data segment during CTPS computation, and the 

average is 223 clock cycles. In the testing, an average two 

components were identified as related to cardiac activity. For 

ocular artifact rejection, the execution time is measured for each 

data channel, and the average is 106 clock cycles. In the testing, 1–

3 components (average, 1.5) were identified as being attributed 

ocular activity. The rejection performance measure as introduced 

in [10] is used to evaluate the cardiac artifact rejection results. 

Cardiac artifacts were sufficiently removed with the hardware 

implementation of CTPS while keeping the signal of interest 

unchanged. 

 

Table 4.3: Resource utilization of artifact rejection design 

Item Occupied Available Percentage 

Number of slices 15742 56880 27% 

Number of DSP blocks 95 576 16% 

 

 

4.3.2 Result analysis and discussion 

The requirements of CTPS design are satisfied in two ways. On the 

one hand, traceability between the requirements and different 

models is established, which ensures requirement coverage during 



 

 

the system modeling process. The requirements (CardiacArtifact 

and Method) of CTPS design are traced to model elements 

including a state machine model CAStructureAllocate, a use case 

diagram CAIdentification and a sequence diagram 

ArtifactIdentification, which are colored yellow in Fig. 4.2. The 

other traced model elements are not shown for the readability of 

the diagram.  

Subsequently, the CTPS is realized and verified on an FPGA board 

to further cover the relevant requirements. The covered 

requirements by CTPS design are colored green in Fig. 4.2. The 

hardware implementation of CTPS ensures the traceability of 

requirements to the final realization. 

Again, the requirements of temporal and spatial correlation design 

(OcularArtifact, IdentifyEyeBlinks and Method) and data cleaning 

(DataCleaning) are first traced to different model elements 

guarantee the requirements coverage in system modeling. They are 

refined by tracing to both structural and behavioral diagrams.  

Secondly, the requirements of temporal and spatial correlation and 

data cleaning are covered by implementation and verification on an 

FPGA board. The covered requirements in this section are colored 

green in Fig. 4.3. The requirements covered in previous sections 

are colored yellow in Fig. 4.3. Up to now, all the requirements of 

MEG signal pre-processing are fully covered, not only by 

traceability to different system model elements, but also by 

realization and verification on an FPGA board. 

Real-time capability is achieved in this work by using a parallel 

computation platform FPGA, which makes best of the parallelism 

of the matrix-matrix multiplications or matrix-vector 

multiplications in MEG signal pre-processing. The computation 

modules of lower levels are designed in the pipeline structure, 

further enhancing the throughput. Data cleaning is performed in 

parallel to estimating a new demixing matrix (see Fig. 2.8), leading 

to the possibility to massively parallelize computation on FPGA. 

The data cleaning procedure is performed with a time delay of less 

than 1 ms.  

In [10], MEG data is tested on the Intel i5-2410M Core with the 

power dissipation of 35W. The reported processing time, including 

data decomposition and artifact rejection, is 1.1 seconds without 

taking the data training into account. The average computation 

time in this study is 1.4 seconds but with much lower power 

dissipation (maximum 7.5W). The CPU implementation (on an 

Intel Core i5-2410M, 2.3 GHz, 6 GB RAM) is not application 

specific and often slowed by the computation tasks of other threads. 

While the FPGA dedicated design has advantages in terms of both 

speed and resource consumption. 

As described in section 5.1.1, signal processing systems with a 

delay of less than 200 ms are considered to be real-time in this 

work. Different computation times for real-time feedback design 

are indicated in previous studies. In the studies in [9],[13],[47], 

real-time designs a feedback update every 500 ms are reported.  A 

real-time system with a feedback update every 300 ms is provided 

in [12]. Despite the differences in feedback delay, all authors 

described their systems as being real-time capable. In this work 

and in [10], the artifact rejection, not including data decomposition 

and data training, takes < 1 ms. In summary, the hardware 

implementation of MEG signal pre-processing offers effective 

real-time capabilities, with low power dissipation, high speed and 

reasonable resource consumption. 

 

 

 

Figure 4.2. Requirement coverage of CTPS design 

 

 



 

 

 

 

 

 

Figure 4.3. Requirement coverage of temporal and spatial correlation 

 

V Conclusion 
This work introduces an RDD & MBD methodology for real-time 

computation systems. It handles the ever-increasing complexity of 

computation systems by increasing the abstraction level in the 

design.  

The present work focused on the design of a SoC capable of 

performing real-time artifact rejection in MEG data processing, 

because previous studies have either neglected or simplified real-

time artifact rejection [9],[12],[13],[48]. The reconfigurable 

hardware designs of MEG signal pre-processing here were 

parameterized and could be modified externally within the same 

hardware architectures to be generally applicable to other MEG 

systems.  

The MEG-2.0 RT project aims to develop an MEG real-time 

signal-processing device to be used as an add-on to existing MEG 

systems, thus enabling, for example, neurofeedback applications. 

The system model of the real-time MEG signal processing chain 

developed here and the real-time artifact rejection implementation 

that complied with the system/project requirement model is a first 

and essential component of the Jülich Research Center MEG-2.0 

RT project. 

As part of the future work, source localization is an important 

approach to image the electrical activities of deep brain structures 

in both fields of EEG and MEG. The RDD & MBD approach is 

ideal working on the source localization problem, because real-

time and embedded systems can be easily designed using SysML 

[49]. In this context, the high level exploration process helps the 

developer effectively manage the design complexities. 

Additionally, the choice of high-speed hardware platforms well 

meets the demand of providing data processing results in real-time. 
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