
Requirement-driven Model-based Development Methodology

Applied to the Design of a Real-time MEG Data Processing Unit
Tao Chen

1,2
, Sergey Suslov

1
, Michael Schiek

1
, Jürgen Dammers

2
, N. Jon Shah

2,3,4
, Stefan van Waasen

1,5

1Central Institute of Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
2Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

3Department of Neurology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
4JARA–BRAIN–Translational Medicine, RWTH Aachen University, 52074 Aachen, Germany

5Communication Systems, Faculty of Engineering, University of Duisburg-Essen, 47057 Duisburg, Germany

Abstract — The paper describes a multidisciplinary work that uses

a model-based systems engineering method for developing real-

time magnetoencephalography (MEG) signal processing.

We introduce a requirement-driven, model-based development

methodology (RDD & MBD) to provide a high-level environment

and efficiently handle the complexity of computation and control

systems. The proposed development methodology focuses on the

use of System Modeling Language (SysML) to define high-level

model-based design descriptions for later implementation in

heterogeneous hardware/software systems. The proposed approach

was applied to the implementation of a real-time artifact rejection

unit in MEG signal processing and demonstrated high efficiency in

designing complex high-performance embedded systems.

In MEG signal processing, biological artifacts in particular have a

signal strength that overtop the signal of interest by orders of

magnitude and must be removed from the measurement to achieve

high-quality source reconstructions with minimal error

contributions. However, many existing brain-computer interface

(BCI) studies overlook real-time artifact removal because of the

demanding computational process. In this work, an automated real-

time artifact rejection method is introduced, which is based on the

recently presented method “ocular and cardiac artifact rejection for

real-time analysis in MEG” (OCARTA). The method has been

implemented using the RDD & MBD approach and successfully

verified on a Virtex-6 field programmable gate array (FPGA).

Keywords - MBSE · SysML · real-time

systems · MEG ·artifact rejection · Neurofeedback

 I Introduction
In recent years, semiconductor technology has advanced

continually; the scale of heterogeneous systems has been

increasing dramatically and very different disciplines are involved

[1]. However, an interconnected System of Systems (SoS) as a

whole is much greater than the sum of the individual subsystems

[2]. The interconnectivity and data transfer among the constituent

systems can be extremely complex and hard to control [3].

Systems engineering (SE) is an interdisciplinary approach for

handling the complexity of large and intricate designs by providing

a development environment at a much higher level of abstraction.

Systems engineering methods utilize a large degree of abstraction

to visualize a system and relevant parts, which helps a developer

focus on the aims of a system rather than the implementation

details. It enables the change from technical to strategic

development decisions because the cost of principal mistakes

increases with design complexity [4]. Systems engineering is

becoming increasingly widely applied over the years, and

numerous modeling tools and methods are proposed to address the

increasing complexity of today’s heterogeneous systems [3].

Model-based systems engineering (MBSE) has the advantages of

low cost, time saving, and accuracy compared with traditional

methodologies in embedded system design.

We proposed a requirement-driven, model-based development

methodology (RDD & MBD) as a further development of

comprehensive methodology for functional design in digital

systems [4]. It has been elaborated in our institute to address the

problems of heterogeneous computation and control system design

using System Modeling Language (SysML) [5]. The methodology

is exploited in the design and implementation of a real-time signal

pre-processing system for magnetoencephalography (MEG). This

work is part of the development of the MEG-2.0 Real-Time project

(MEG-RT 2.0) at Jülich Research Center (Forschungszentrum

Jülich GmbH, Germany) aiming at developing a MEG real-time

signal processing device as an add-on to the 248-channel whole-

head magnetometer MEG system (Magnes 3600WH) from 4D-

Neuroimaging. Applying system modeling to our design allowed

comprehensive and thorough evaluation of actual design

requirements and forward planning of possible technical solutions

to find an optimum solution in advance.

MEG is a non-invasive neuroimaging technique that investigates

brain activities with high temporal resolution [6]. In modern MEG

systems, an array of hundreds of low-temperature magnetometers

is used to record components of the magnetic field produced by

post-synaptic neuronal activities. The magnitude of the magnetic

field components is in the range of a few tens to hundreds of

femtotesla, while some noise and biological artifacts, such as

ocular and cardiac activity, can be ten to hundred times larger [7].

These artifacts must be removed from the measured signals as they

can lead to source reconstruction errors [7]. However, artifact

rejection is computationally extremely demanding [8].

In MEG studies, real-time MEG data analysis has become a topic

of high interest recently and requires automatized real-time artifact

removal [8],[9],[10]. One of the first real-time MEG source

analyses was demonstrated in [11], but only including cardiac

artifact rejection and capable for real-time processing of a reduced

number of channels. In other studies, real-time MEG analysis is

limited to certain frequency bands only [12],[13],[14],[15].

The system modeling work of MEG signal pre-processing was

recently published in [3]. In the present paper, we optimized the

previous models and expanded the system engineering by

implementing a System-on-Chip (SoC) capable of performing real-

time artifact rejection.

In the present work, based on the performed system modeling and

analysis, we planned the target design to be developed and

implemented on a single workstation platform combining field

programmable gate array (FPGA) and graphics processing unit

(GPU) co-processing boards containing a software framework for

real-time MEG data analysis.

The paper is structured as follows: Section II describes the systems

engineering process of the target design together with the

performance estimation. Implementation of MEG signal pre-

processing is discussed in Section III. Section IV is devoted to

results and discussion. Finally, the conclusion is given in section V.

II Model-Driven System Design
We have introduced a RDD & MBD for real-time computation

systems based on vendor-neutral specifications. The methodology,

as further development of a comprehensive methodology for

functional design in digital systems presented in [5], has been

elaborated in ZEA-2 to address the problems of heterogeneous

computation and control system design using SysML [4] and

practiced in this work. The development workflow is plotted in Fig.

2.1. It can be roughly divided into three steps: requirements

formalization, functional modeling and structure allocation and

partition.

Requirements formalization begins with elicitating the

expectations and constraints of different stakeholders. The

acquired expectations and constraints are analyzed to obtain a

formalized set of stakeholder requirements, which conveys a

preliminary description of the system and shows its boundaries

from the view of stakeholders. Then, the stakeholder requirements

are further decomposed into system requirements by adding

abstract functional specifications, which are grouped into three

categories, i.e. Qualitative, Quantifiable, and Major operations, as

shown in Fig. 2.1. The qualitative category mainly includes

immeasurable requirements such as safety, continuous

observability, and ease of operation. The quantifiable category

captures measurable parameters and constraints. With the

refinement of system models, some qualitative requirements may

become quantifiable. The major operations category depicts the

functionality of the system without specifying implementation

details. Finally, feature derivation and decomposition are

performed on system requirements to produce technical

requirements. The formalized system requirements are further

refined with sub-categories and requirement diagrams by adding

implementation specifics. Full or near full coverage can be

achieved by grouping and generalizing the requirements, and their

subsequent classification and categorization. Requirements

formalization is important both for principle decision-making in

the development process as well as for building a validation plan

for feature checking, and in a certain amount for verification: an

implementation at any abstraction level must match the

requirements of corresponding levels.

Figure 2.1. Model-based system engineering for real-time systems (MBSE-
RT) workflow ([5])

In the second step of the workflow, system modeling is performed

based on the specified system requirements and technical

requirements. The corresponding system dynamic (behavior) and

block structure are modeled in parallel, including Data modeling,

i.e., data structure, data dependency, data exchange flows, and

Methods and algorithm modeling.

In the final step (structure allocation and partition), quantifiable

requirements are imposed in the form of mathematical constraints

to the relevant structural model elements to properly allocate them

to relevant computation structures with predictable implementation

parameters, such as performance, resource budget, and power

consumption. Thus, the functions are partitioned and allocated to

the corresponding computation hardware. This process is iterative,

which indicates that the procedure may be repeated for each sub-

system performing refinement of the system on different

abstraction levels [4],[5].

2.1 Requirements formalization

The most important part of system modeling is defining

requirements, because requirements are the foundation of system

design, and the aim of system design is to satisfy the requirements

[16].

2.1.1 State the problem

MEG enables studying the spatio-temporal dynamics of the

electrophysiological interaction in the human brain non-invasively.

With MEG, the brain in action can be investigated at very high

temporal and relatively high spatial resolution depending on

several factors (e.g., the strength and depth of the active sources)

[17].

To push MEG further towards a clinical diagnosis tool (e.g., pre-

surgery planning, early diagnosis, localization of epileptogenic

zones, rehabilitation of stroke), results must be available during or

soon after the investigation. The dynamics of the brain are

extremely rich and it is possible to observe major effects by

applying stimuli with respect to the state of the neuronal dynamic

system [18], which is termed neuronal feedback. The ability to

control in real-time provides new insights into the brain function of

both normal and impaired brain processes. As indicated in [19], a

time delay of >200 ms between brain activity, e.g., movement

intention and the feedback output by the device, is clearly

noticeable. In real-time computing, processing steps, including

data acquisition, filtering, and artifact rejection, are designed in a

pipelined structure. The latency is caused by the step with the

largest delays. Therefore, signal processing systems with an overall

constant delay of less than 200 ms are considered as real-time

processing for neuroprosthetic control [19]. Brain–computer

interfaces (BCI) utilizing neurofeedback stimulation hold great

potential for neuroscience and therapy in neurology, but require

adequate real-time analysis of ongoing brain responses. Therefore,

the MEG-RT 2.0 project was proposed to address advanced MEG

signal processing, including current source reconstruction, which

will enable real-time neurofeedback applications.

2.1.2 Stakeholder requirements definition

It is important to identify the environment with which the system

interacts. Use case diagrams describe the high-level functionality

of the system and model interactions between users and the system.

The use case diagram shown in Fig. 2.2 was created to define the

boundaries of MEG-RT 2.0 and the operation contexts to which it

is subjected. MEG-RT 2.0 may interact directly or indirectly with 4

actors, as shown in Fig. 2.2, an Operator (a stick figure sign) who

operates the system, an MEG Database (a rectangle with the

keyword «actor»), an MEG Acquisition System (DAS), and a

Subject (Patient) who interacts indirectly with the system through

the MEG Acquisition System (DAS). MEG operators and subjects

are identified as main stakeholders. Other indirectly related

stakeholders include system developers, hospital staffs, etc.

To improve the feasibility of MEG as a clinical diagnostic tool, the

major expectations of stakeholders are to process MEG signals in

real-time, thus enabling, for example, neurofeedback applications.

Therefore, the MEG-RT 2.0 design, as an add-on to an existing

data acquisition system (DAS), shall be capable of Perform RT

MEG Preprocessing, Perform Offline MEG Study and 3D Source

Localization, as shown in Fig. 2.2. Additionally, is further

extended with functions including record online data, MEG

measurements filtering, real-time and automated artifact rejection,

etc.

Figure 2.2. Use case diagram of MEG signal pre-processing

We attempt to identify all MEG equipment stakeholders and

collect as many requirements as possible. The expressed

stakeholder needs and expectations are far from formalness and

maturity. They need to be refined into stakeholder requirements.

Tab. 2.1 gives an idea of the aspects for requirements elicitation.

The given approach to requirement elicitation is based on

distinguishing phases of a product life cycle and categorizing the

questions that can be stated in each phase to computing and

controlling systems. Fig. 2.3 shows the overall structure of

decomposing the formalized stakeholder requirements into system

requirements and then further into technical ones by adding more

details. Consequently, the decomposition process enables

requirement traceability through different layers.

Table 2.1: Life-cycle requirement taxonomy ([5])

Life-cycle stage Requirement

Concept Business goals, operational concept

Design

Development cost, development time, system

configurability, system modularity, 3
rd

-party

compatibility, legislation

Manufacture
Manufacture cost, manufacture time, production

volume, legislation

Deployment
Ecosystem, deployment cost, deployment time,

construction

Operating Functional, reliability, exploitational

Disposal
Disposal cost, dismounting time, component

reuse, component recycle

2.1.3 System requirements specification

System requirements, in the conceptual sense, form the elementary

basis in system development and determine the capability, function,

or performance the system has to achieve [1],[20]. The system

requirements for MEG signal processing need to be captured and

traced in the system model. The step described in section 2.1.2

contains a set of stakeholder requirements that result in more

specific system ones. First, the more refined system requirements

are unstructured and put in a folder named Unqualified. Then, we

formalize the system requirements in three categories: Functional,

Qualitative, and Quantifiable. Fig. 2.3 shows the top-level package

structure that accommodates these requirement categories.

Functional requirements represent specific capabilities and major

operations in the design of MEG-RT 2.0, including maintenance

mode and major mode. We focus on major mode, including data

decomposition and artifacts rejection. Qualitative requirements

refer to unmeasurable stakeholder needs, including operator

interface in Python, real-time operation, etc. Quantifiable

requirements address properties, which can be measured and

quantified, including the number of channels, the sampling rate, etc.

2.1.4 Technical requirements specification

The system requirements are elaborated further by the breakdown

into technical requirements with implementation details.

The top-level system model for MEG-2.0 RT was developed in the

present study. As the approach steers down to the modeling and

design of lower levels, this study only concentrates on the design

of real-time artifact rejection using OCARTA (ocular and cardiac

artifact rejection for real-time analysis in MEG) in the MEG-RT

2.0 workflow. This is because previous studies either neglected or

simplified artifact rejection [9], [21].

This section describes the breakdown of the system requirements

into a cohesive set of technical requirements [22]. All essential

requirements for MEG signal processing are clearly described so

that they can be satisfied and traced by the system design. Fig. 2.4

depicts requirement decomposition and the initial derivation of

requirements in MEG signal pre-processing. The stakeholder

requirement MEGPreprocessing is separated into more detailed

system requirements. The technical requirements of data

processing methods are derived from an analysis of each functional

requirement of the system level. In addition to relationships among

requirements, traceability from system requirements to behavioral

and structural elements is also established.

2.2 System structure modeling

System static structure models the blocks of which the system is

composed. Structural modeling includes four steps: Model the

Problem Domain, Define Blocks, Allocate Requirements to Blocks

and Define Ports [16].

2.2.1 Domain modeling

Domain modeling describes real-world (problem domain) entities

and the relationships between them, which models the system in

the context of its environment. Fig. 2.5 shows a domain model for

MEG signal processing. The operation domain model defines a set

of abstractions based on real-world elements external to the system,

including environment noise, clinical diagnosis and neurofeedback

[16].

The problem domain model is intended to depict the “system” in

which MEG-RT 2.0 operates. Fig. 2.5 shows the systems that

interact together with MEG-RT 2.0 [16]. The OperationDomain is

defined as a system containing other subsystems, including the

humans (Operator, Subject, etc.) who directly or indirectly interact

with the system, external systems (DAS, Filter, etc.) that

communicate with the system, and environmental elements

(EnvironmentNoise, etc.) that could impact the system. The

operational domain model efficiently provides an overview of the

system and how it operates. Details of the OperationDomain

system are elaborated in the OperationDomain BDD shown in Fig.

2.5.

2.2.2 System architecture of MEG signal pre-

processing

The SysML block definition diagram (BDD) is used to display

various kinds of elements (blocks, actors, value types, interfaces,

etc.) and their structural relationships (associations, generalizations,

dependencies) about the MEG pre-processing unit [23]. As an

example, Fig. 2.6 shows the child block definition diagram of

MEGPreprocessing block in Fig. 2.5 in order to highlight the

details. The composite association for the MEG-RT 2.0 block is

shown: the MEGSignalPreprocessing block is composed of four

main sub-blocks: InitialTraining, DataDecomposition,

ArtifactIdentification, and DataCleaning. Additionally, value

properties (e.g. meg_raw: MEGArray) are listed in the second

compartment of a block, which hold parameter values in MEG

signal processing. The flow ports are listed in the third

compartment of the MEGSignalPreprocessing block. The flow

ports model the data that flow in and out of the

MEGSignalPreprocessing block, which are detailed in the

corresponding IBD. In the third compartment of part properties are

operations of the relevant block, which represent behaviors the

blocks perform.

In addition to relationships among requirements, traceability from

data requirements to Value Type blocks is also established.

2.2.3 System internal structure

The internal block diagram (IBD) is a complementary view to the

BDD. Fig. 2.7 shows the IBD of MEGSignalPreprocessing block

in Fig. 2.6. It specifies the internal structure of

MEGSignalPreprocessing with respect to how its parts are

interconnected [22],[23]. It conveys the part properties of the

MEGSignalPreprocessing block and the related connectors.

Moreover, it is allowed to specify multiple levels of nested parts in

a single view by showing part symbols within part symbols, e.g.,

the it:InitialTraining part property [22],[20].

Figure 2.3. Requirement hierarchy of MEG-RT 2.0 (excerpt)

Figure 2.4. Requirement decomposition of MEG signal pre-processing (excerpt)

Figure 2.5. Domain model of MEG signal processing

Figure 2.6. Top-level block definition diagram

2.3 System behavior modeling

Behavior models visualize, specify, construct, and document the

dynamic behaviors of the system during the interactions with users

and the environment [16]. The adopted SysML behavioral

diagrams in this study include activity diagrams, state machine

diagrams, and sequence diagrams. State machine diagrams

describe event-driven behaviors that are not user-centric. Activity

diagrams convey system behaviors in terms of the flow of inputs,

outputs, and control. Sequence diagrams detail use cases and

model interactions among parts of a block.

The MBSE toolkit used in this study supports the allocation of

requirements to behavioral elements using simple drag-and-drop to

create traceability from requirements to behaviors in the system

model [16].

2.3.1 System behaviors of MEG signal pre-processing

Activity diagrams are adopted to specify the MEG data pre-

processing workflow using a controlled sequence of actions that

transform inputs (matter, energy, or data) to outputs [22],[23]. Fig.

2.8 shows the top-level activity diagram for MEG signal pre-

processing. The initial node (a small, filled-in circle) ActivityInitial

marks the starting point of MEG Signal Preprocessing activity.

Because data decomposition and artifact identification are

performed in parallel to the data cleaning, the pre-processing

workflow has two data streams. One data stream is used to update

the demixing matrix and the other is used to synchronously reject

artifacts in real-time. Therefore, the control token on the initial

node concurrently triggers the execution of ReadData activity and

DemixParams action via an outgoing control flow (a line with an

arrowhead) and a fork node. Furthermore, an object node models

the input or output parameters of an action or activity. The notation

for an object node is a small rectangle attached to an action or

activity with the object node name and data type floating beside it,

e.g., ReadData activity has one input parameter Meg_raw and one

output parameter Meg_raw of data type MEGArray. When

ReadData activity is executed, the output parameter Meg_raw is

transmitted to Filter activity by an object flow (a solid line with an

arrowhead). InitialTraining activity, DecomposeData activity, and

IdentifyArtifacts activity are enabled in a similar manner. When the

IdentifyArtifacts activity is executed, the output parameters flow to

dp: DemixParams send signal action (a convex pentagon shaped

like a signpost), a specialized action that asynchronously sends

matter, energy, or data [23]. DemixParams accept event action (a

rectangle with a triangular section missing on one side [22]) waits

for the parameters of dp: DemixParams send signal action to arrive

asynchronously. A send signal action and an accept event action

work together to model communication between two concurrent

work flows. Then the following activities are executed. Finally, the

activity final node ActivityFinal indicates the termination of the

entire activity.

2.3.2 System state transitions of MEG signal pre-

processing

State machine diagrams describe system behaviors in terms of

operating states, triggering events and system actions.

Fig. 2.9 shows the top state machine diagram for MEG signal pre-

processing. It starts with an initial pseudostate, a small and filled-in

circle named GInitial. Then a transition (a solid line with an

arrowhead) leads to Offline state. The notation of a state is a round-

cornered rectangle, which displays state name and other

information. When the guard Enable MEG-RT 2.0 evaluates to be

true, it transits to the composite state Online. Again, the composite

state starts in an initial pseudostate, then transits to Initialization

state where the system performs self-check and initialization

process. After that, the transition reaches Training state, where cost

functions of artifacts and spatial template are calculated

concurrently. Afterwards the transition goes to the composite state

Active where MEG data decomposition and data cleaning are

performed in parallel. If an error occurs to any of the above

mentioned states, the state machine enters the state Fail. and then

one outgoing transition from the join node goes through the

following states and ends in a final state (a small, filled-in circle

surrounded by a larger circle) until GFinal.

Figure 2.7. IBD of MEGSignalPreprocessing

Figure 2.8. System activity diagram of MEG data pre-processing

2.3.3 System interactions of MEG signal pre-

processing

Sequence diagrams depict the interaction between system

components as a sequence of message exchanges [22]. As plotted

in Fig. 2.10, the structural components of MEG pre-processing are

represented by lifelines (a rectangle attached with a dashed line),

InitialTraining, DataDecomposition, ArtifactIdentification, and

DataCleaning. The dashed line represents the relevant lifetime of

the structural component. Lifelines are participants involved in an

interaction that interact with each other by exchanging messages.

In InitialTraining, the first 12 s of the recording of each

measurement are used as a training data set to produce initial

parameters, including CalculateCostFunction, DecomposetheData,

IdentifyArtifacts, and UpdateArtifacts [10]. In real-time MEG

signal pre-processing, each measurement is split into segments

(e.g., 12 s each) and the segments are processed separately [8],[10].

As mentioned earlier, the processing of one segment is based on

the prior calculations of the last segment, as the data segments

overlap within a range. Therefore, based on the prior results

obtained from InitialTraining, the design forms a 2-stage pipeline

structure, with DataDecomposition and ArtifactIdentification being

the first stage and DataCleaning the second stage. In addition, it is

also permissible for a lifeline to send messages to itself, as the case

DataDecomposition shows. A constrained independent component

analysis (cICA) approach is used to decompose MEG data into

statistically maximal independent components, including updating

data with prior results (UpdateRawData), transforming the data

with the cost function (FitSigmoid) and then computing the

demixing matrix iteratively (ICALearning) [10]. SysML supports a

mechanism termed combined fragments to model complex control

logic of interactions. The control logic type is defined by a string

(an interaction operator) that appears in a pentagon in the upper

left corner of the combined fragment rectangle [23]. The many

computation iterations of DataDecomposition are modeled with a

loop operator loop (0, 200), as shown in Fig. 2.10. The loop stops

when the demixing matrix converges. When raw data are

successfully decomposed into independent components,

ArtifactIdentification identifies cardiac components based on

CTPS (cross trial phase statistics) (IdentifyCardiacArtifact (CAIdx))

and ocular components based on a spatial and temporal correlation

(IdentifyOcularArtifact (OAIdx)) [7],[10],[23]. Finally,

DataCleaning rejects artifacts components (RemoveArtifacts

(Weights_clean)) and back-transforms data to MEG space

(Backtransform(Meg_clean)). A par operator is used to indicate

that DataDecomposition and ArtifactIdentification are done in

parallel to DataCleaning.

2.3.4 System consistency

“A diagram of the model is never the model itself; it is merely one

view of the model” [23]. Different diagrams were created to show

the system from different perspectives. The established MEG

model is verified by model execution. The accuracy and integrity

of the model is checked by visual examination of the model

execution.

The consistency between the system behavioral diagrams is

assured by the MBSE toolkit. Every action on an activity diagram

must have at least one corrsponding messsage on one of the

sequence diagrams. Each messsage on a sequence diagram must

appear at least once on one of the activity diagrams. All actions

and messages on the behavioral diagrams are realized by the

definition of ports and associated interfaces on structural diagrams.

The correct behavior of the structural diagrams in response to the

inputs is verified by execution and visual check of the

corresponding state-based behavior.

To assure that all the defined functional and non-functional

requirements are covered, traceability links are established by

allocating requirements to the model elements.

Figure 2.9. System state machine diagram of MEG data pre-processing

Figure 2.10. System sequence diagram of MEG data pre-processing

2.4 Structure allocation and partition

2.4.1 Constraints and parametrics definition

SysML parametric models include constraint blocks and

parametric diagrams, which together impose mathematical

relationships on the values of the design.

In Fig. 2.11, constraint blocks contain properties to specify the

input and output parameters. Additionally, scripts are embedded in

the constraint blocks to depict the executable components.

However, Fig. 2.11 does not specify how the constraint blocks and

expressions are connected to each other to accomplish a complex

computation; this is done by a parametric diagram [23].

2.4.2 Parametric diagrams and performance analysis

A parametric diagram is a restricted type of IBD that connects

instances of primitive constraint blocks to transform a set of inputs

into outputs [16] [23].

Figure 2.11. Constraint blocks of MEG signal pre-processing

Constraints are expressed as equations or inequalities whose

parameters are bound to the properties of the design [22]. A

constraint block is a special kind of block used to encapsulate

constraint expressions [23]. Constraint blocks have two main

features: constraint parameters and a constraint expression to

impose equations or inequalities. The BDD in Fig. 2.11 shows that

the MEGSignalPreprocessing constraint block is composed of the

four simpler blocks to build a more complex computation. In the

constraint blocks defined by the modeling toolkit, a constraint

parameter has the notation of a small rectangle floating inside the

block. A constraint expression is defined by adding JavaScript,

Jscript, or VBScript scripts to a block, which provides the

underlying mathematical foundation for further analysis or

simulation.

MEGSignalPreprocessing uses these computations mainly to

decompose MEG raw data into independent components for

subsequent identification and rejection of artifacts.

The mathematical relationships in SysML parametric models can

specify the physical properties (e.g., equations, inequalities, or

parameter bindings) or the non-functional properties (e.g.,

performance, speed, power dissipation, or reliability) of a system.

Fig. 2.12 shows a parametric diagram for the constraint block

DataDecomposition from Fig. 2.11, where the DataDecomposition

is depicted as the frame of the parametric diagram. The constraint

properties in the diagram are usages of the constraint blocks nested

within DataDecomposition. The parameters of the constraint

properties are bound to each other and to the parameters of

DataDecomposition. Together, they show the computation flow of

the data decomposition process in MEG signal pre-processing.

Specifically, Fig. 2.12 defines precisely how the sub-modules of

MEG data decomposition are related. These relationships model

the engineering physics and behaviors of the data propagation

between the ports of the components within the ICA subsystem.

Parametric constraints represent equations addressing the inputs

and outputs. Constants are given in the form of value properties.

Based on the established models and analysis, the design is first

partitioned to a certain technological basis to best suit system

requirements and constraints. The development of MEG-RT 2.0 is

based on a single workstation platform combining FPGA and GPU

co-processing boards, including a software framework for real-

time MEG data analysis. The project covers developments for data

pre-processing steps utilizing a Xilinx Virtex-6 FPGA board as

well as the integration of hardware modules connecting the

software framework of the workstation. The GPU is connected to

the FPGA for exchanging intermediate data. Further 3D

reconstruction and multi-modal visualization (i.e., MEG and

magnetic resonance imaging [MRI] data) takes place in the GPU.

As the work focuses on real-time artifact rejection, performance

analysis is carried out on the MEG signal pre-processing unit.

Given the parametric analysis and the deduced data-stream models,

the MEG signal pre-processing can be quantitatively estimated for

performance. In the depicted SE models, the design performance

depends on the amount of data exchanged through the modules.

Figure 2.12. Parametric diagram of DataDecomposition

Thus, the performance is assessed by calculating the data traffic

from the top module to lower level modules.

The present study uses a 16-bit fixed-point numeric. One bit is

used for the sign, one bit for the integer part, and 14 bits for the

fractional part. Even though the double precision floating point is

of higher precision, fixed-point number representation is more

practical for hardware designs. The disadvantages of realizing

floating-point units on FPGA are high resource and high clock

frequency demands. Although previous studies have implemented

floating-point computation architectures on FPGAs, very few

practical applications exist [24]. On the other hand, modern

FPGAs are equipped with numerous hardwired fixed-point digital

signal processors (DSPs) suitable for fixed-point arithmetic

realization, which potentially improves performance and power

efficiency. Convergence has been reported in [24],[25],[26],[27]

for the FPGA implementations of ICA and deep neural network

training using 16-bit fixed-point computation units. The rough

precision of the 16-bit fixed-point numeric can reach 0.000030518.

Before the computation, normalization is performed on the MEG

data to avoid overflow.

According to the data specification in Tab. 2.2, the volume of

MEG data is exceedingly large for FPGA on-chip BRAM (block

random access memory). Thus DDR3-SDRAM external memory is

used to store MEG data and intermediate results of large volume.

The Xilinx DDR3 IP core is utilized to instantiate and control the

DDR3 RAM with the read/write width of 256 bits and clock

frequency of 400 MHz.

The hardware resource model is based on counting of clocked

memory (in bits) required for allocation of local data aggregates of

the FPGA. Although it is not intended to yield a precise flip-flop

budget for each processing unit of the FPGA implementation, it

can predict each design module’s order of complexity with a high

degree of certainty. Tab. 2.2, Tab. 2.3, Tab. 2.4 and Tab. 2.5

presents the prognostic resource model computed for different

modules of the MEG signal pre-processing system.

Tab. 2.2 shows the data traffic of different sub-modules in

principal component analysis (PCA). It mirrors the application

performances in different sub-modules depending on the data flow

in the processing units. Tab. 3.1 also specifies the processing time

(data in brackets estimate the processing time with an operating

frequency of 100 MHz).

The PCA computation is separated into four steps. The data traffic

bottleneck is the estimation of eigenvalues, where the calculation

requires a number of iterations. The intermediate results of the

EigenAnalysis and PCMatrix modules are small-volume and stored

in the the block random access memory (BRAM) on FPGA for

speeding up the computation by the short memory access time. It is

important to note that Centre and COV modules involve

processing very large dimension matrices. The input and output

streams of the two modules have external SDDR3 as the memory

bank, which adds to the processing time. Therefore, the upward

and downward data streams of the two modules are split into three

channels operating in parallel.

Table 2.2: Data traffic of PCA for performance estimation and

total percentage of Virtex-6 flip-flop memory (in memory words)

Module Centre COV EVD PC Percentage

Data

traffic

3,027,336

(60.54

ms)

3,027,336

(375.36

ms)

61,504

(152.52

ms)

3,033,536

(75.68

ms)

41%

Tab. 2.3 specifies the traffic volume of different sub-modules in

ICA and the application performances in different sub-modules are

estimated based on the data flow in the processing units. The table

2.3 also calculates the processing time (data in brackets estimate

the processing time with an operating frequency of 100 MHz).

The ICA computation is separated into three modules: data update,

judge, and learning. The data traffic bottleneck is the learning

module, where exponential computation and multiple matrix

calculations are required. The intermediate results have small data

volume and are stored in the block RAM on FPGA for speeding up

the computation by the short memory access time. Prior knowledge

from the previous data segment is incorporated during the

computation. The measured signal mixtures are separated into

underlying sources within one iteration, which greatly speeds up

the decomposition.

Table 2.3: Data traffic of ICA for performance estimation and total

percentage of Virtex-6 flip-flop memory (in memory words)

Module Data update Judge Learning Percentage

Data

traffic

305,775

(8 ms)

625

(0.006 ms)

305,775

(158.68 ms)

68%

Tab. 2.4 shows the data traffic of different sub-modules in CTPS.

Application performances in different sub-modules are presented

based on the data flow in the processing units. Meanwhile, the

processing time is analyzed (data in brackets specify the

processing time under the operating frequency of 100 MHz).

The CTPS computation is divided into three modules: Hilbert

transform, cumulative distribution function (CDF) estimation, and

the Kuiper test [7]. The data traffic bottleneck is the Kuiper test,

where exponential computation is involved. The intermediate

results have small data volume and are stored in the block RAM on

FPGA for speeding up the computation by the short memory

access time.

Table 2.4: Data traffic of CTPS for performance estimation and

total percentage of Virtex-6 flip-flop memory (in memory words)

Module Hilbert

transform

CDF

estimation

Kuiper

test

Percentage

Data

traffic

509

(0.37 ms)

509

(0.15 ms)

509

(0.43 ms)

11%

As shown in Tab. 2.5, the data traffic density of temporal and

spatial correlation design is much lower, as the computation is

simple and only involves addition, vector–vector multiplication,

and division. Thus, memory access occupies most of the

computation time.

Table 2.5: Data traffic of temporal and spatial correlation for

performance estimation and total percentage of Virtex-6 flip-flop

memory (in memory words)

Module Covariance Variance Division Percentage

Data

traffic

12206

(0.21 ms)

12206

(0.18 ms)

16

(0.08 ms)

4%

III Implementation of MEG Signal Pre-

processing
Based on the behavioral models, HDL code can be generated

automatically, which is often sufficient for direct implementation

in hardware. The algorithms covered in artifact rejection were

implemented by modifying the generated Verilog hardware

description language (HDL) code. Each algorithm is described

briefly, and then the implementation process is detailed.

3.1 Code generation

MEG signal pre-processing mainly involves matrix–matrix

multiplications or matrix–vector multiplications, for which parallel

computation is optimal [10]. For the purpose of acceleration,

reconfigurable hardware solutions such as FPGA are currently

valuable approaches for tackling the computation complexity.

Enterprise Architect well supports code generation and reverse

engineering. We generate HDL code from MEG-RT 2.0 state

machine diagrams, which describe system behaviors with respect

to operating states, triggering events and system actions [16].

For generating code from behavioral models, the state machine

diagrams are contained within a class diagram. Then, two triggers

(reset and clock) are added and associated with the top-level state

machine diagram. Meanwhile, the triggers are associated with the

component’s ports in the class diagram. After the preliminaries

above, the desired HDL code is generated. The final step is to feed

the generated code into an event-driven simulator and verify the

design.

3.2 Implementation

Based on the behavioral models, HDL code can be generated

automatically, which is often sufficient for direct implementation

in hardware. The algorithms covered in artifact rejection were

implemented by modifying the generated Verilog HDL code.

3.2.1 Implementation of PCA

PCA is one of the most commonly used techniques to decrease the

dimensionality of a dataset while retaining most of the information

by means of its variance [28], which reduces the computational

complexity of ICA. PCA maps the original data into a new set of

orthogonal basis vectors, where the components are stored in a

decreasing order of variance [29]: The first axis (first principal

component) accounts for the greatest data variance of the original

data set while the last one the least data variance. In terms of MEG

data processing, the first 25 principle components are chosen for

data processing as they explain more than 95% of the data variance.

Therefore, the design shall be adaptable to different MEG systems

with different channel numbers.

PCA implementation is detailed here as it has been introduced in a

previous publication [30].

3.2.2 Implementation of ICA

In this study, the natural-gradient version of Infomax ICA [31] is

chosen for hardware implementation. It can be learned from Eq.

3.1 that not only is the convergence speed of increased, but

also that the computation of is avoided, which facilitates

the FPGA realization.

Typically, ICA-based signal decomposition is performed on the

whole data set at once. In our experiments, this would translate to

about 170,000 time samples (see Section 4.1). To realize real-time

MEG data processing, data are split into much smaller segments

for analysis. For data decomposition, we use a sliding window with

a window width of 12 s and 10 s overlap. Please refer to [8] for a

detailed description on time window length selection and relevant

effects.

 , and

 (3.1)

where is the segment size, is the learning rate whose initial

value is . In general, demixing matrices are estimated for

segments separately, i.e. whenever the estimation of is

completed, the next demixing matrix is estimated on basis

of the last 12 seconds. During the estimation of , is used

for data decomposition. In the computation process, is

seen as a constant matrix. Based on the features of FPGA design,

the Infomax implementation can be divided into input module,

learning module, matrix multiplication module (data update), judge

module and output module, among which learning module is the

core of the design. The learning module initializes demixing matrix

 and performs the learning iterations in Eq. 3.1. The workflow of

Infomax is illustrated in Fig. 3.1.

The input module reads out segments of data from the memory.

The chosen sliding window with a window width of 12 s translates

to 12,206 data points. After reading the 12,206 data points, the

output of the input module is set to zero and waits for the trigger

signal of the learning module.

The learning module performs the learning process of Infomax

ICA and computes the demixing matrix of the data segments.

The identity matrix was chosen as the initial matrix when

calculating the demixing matrix of the first data segment. The

previous demixing matrix is used as the

initial matrix to compute the demixing matrix

 of the current segment, where is the number of data

segments. Then, the demixing matrix is transmitted to the matrix

multiplication module for data update.

Figure 3.1. Architecture of data decomposition

The matrix multiplication module multiplies the MEG data

segment with the corresponding demixing matrix and transmits

the demixing matrix to the judge module.

The judge module checks the convergence of the demixing matrix

 . In the case of convergence, the computation stops, otherwise

the computation is repeated.

3.2.3 Implementation of CTPS

The first step of CTPS is to transform the MEG signals into phase

space. Our design adopted the Hilbert transformation to extract

phase information. Then, the phase distribution is compared with a

uniform distribution using the Kuiper test [32] to identify the

components related to cardiac artifacts.

The Kuiper test is a statistical test that refines the well-known

Kolmogorov-Smirnov test (K-S test) [33]. The Kuiper test is the

adaption of the K-S test for cyclic problems. It quantifies the

probability that two data sets are samples of the same distribution.

For analyzing event-related phase-locked responses, the cross-trial

cumulative phase distribution is compared with a cumulative

uniform distribution [34]. The Kuiper test algorithm was realized

in Verilog using the Xilinx intellectual property (IP) core library to

ease the implementation of blocks as memories or arithmetic

operators. First, the CDF of the phase samples is estimated, as

shown in Fig. 3.2. After the CDF of the phase values is calculated,

it is tested against a uniform distribution by the operations of

subtraction and the maximum search.

3.2.4 Implementation of temporal and spatial

correlation

Ocular artifacts are automatically identified by estimating the

Pearson linear correlation between each independent component of

the MEG signal and the reference electrooculogram (EOG) signal.

As columns of the mixing matrix contain the spatial information, it

is also taken into account by calculating the Pearson linear

correlation between the template and the field maps as extracted by

ICA [10]. The implementation mainly involves covariance and

variance calculation, which is simple and is not presented here.

Figure 3.2. Architecture of CDF estimation

IV Results and Discussion

Cost analysis of resource and performance was carried out to

assess the efficiency of the proposed prognostic (pre-

implementation) model. The design was implemented on a Virtex-

6 FPGA (running at 100 MHz) by optimizing the Verilog HDL

code automatically generated by Enterprise Architect for further

synthesis using the Xilinx ISE 14.1 tool. Questasim 10.5c and

Xilinx Chipscope Pro 14.1 were used to validate the quantitative

requirements and functional correctness. The test MEG data set

was recorded with a whole-head magnetometer system (Magnes

3600WH, 4D-Neuroimaging) [8]. The configurable hardware

design of MEG signal pre-processing was carried out by extensive

parameterization of functional blocks to be generally applicable to

other MEG systems.

4.1 Experiment data set

The design was evaluated using MEG data from a 248-channel

whole-head magnetometer system (Magnes 3600WH, 4D-

Neuroimaging).

During the experiments, MEG signals from five subjects were

measured. The experiment setup is to record neuromagnetic field

changes due to finger tapping cued by auditory stimulation. The

auditory stimulations were 50-ms sinusoidal tones (single clicks)

of 1000 Hz [10]. The dataset is chosen because the experimental

paradigm studies the auditory cortex, a well-known area in the

brain. Detailed information on the dataset is listed in Tab. 4.1.

Table 4.1: Test MEG data details ([10])

sampling rate 1017.25Hz

bandwidth 0.1-400Hz

number of presented stimuli 120

stimulus frequency 1000 Hz

stimulus duration 50 ms

inter stimulus interval 2.0 ± 0.5 s

number of data samples (mean) 168098

experiment duration (mean) 165 s

4.2 Results and analysis of ICA design

4.2.1 Results of ICA design
For design evaluation, the 25 channels of mixed signals are stored

in the block RAM on FPGA. Each channel consists of 12,206 data

points. The ICA modules decompose the mixed signals into

relevant components.

Tab. 4.2 shows the summary of synthesis for Infomax ICA

implementation, which correlates highly with the results of the

prognostic models created for system-level modeling. The

reconfigurable hardware designs of Infomax ICA in this work are

parameterized and easily adaptable to data of different dimensions,

which results in different resource utilization.

Table 4.2: Resource utilization of ICA design

Item Occupied Available Percentage

Number of slices 34,128 56880 60%

Number of DSP blocks 311 576 54%

The proposed Infomax ICA hardware design is driven by a system

clock of 100 MHz; the target MEG data has a window size of 12 s

and a sampling rate of 1017.25 Hz. The first 12 s of the data from

each measurement was used as training data set. The data segments

overlap within a time range of 10 s, so the dynamics of the

underlying sources in two overlapping data segments are

analogous. The processing of one segment is based on the prior

calculations of the last segment, which speeds up the

decomposition, and the signal separation can be done in one

iteration. The maximum hardware computation time is 17,326,971

clock cycles. Thus, the throughput is 6103 points/s. Therefore, the

implemented Infomax ICA architecture can support the real-time

requirement of our applications well.

4.2.2 Result analysis and discussion

The requirements of ICA design are first traced to different models

to ensure that all requirements are covered in system modeling.

The requirements (DataDecomposition and Method) of ICA design

are linked to model elements, including a state machine model

InfomaxICA, a use case diagram ICA, and a sequence diagram

DataDecomposition, which are colored yellow in Fig. 4.1. Various

other traced model elements are not listed for the readability of the

figure. Afterwards, the ICA requirements are realized and verified

on an FPGA board. The implemented (covered) requirements are

colored green in Fig. 4.1. Final realization is traced to relevant

requirements to ensure the requirement coverage of SE.

Many studies have been devoted to ICA hardware implementation.

Hardware realizations of ICA algorithms are challenging with

respect to resource, flexibility, and speed. Many studies on the

real-time implementation of ICA have targeted data of much lower

channel and sample numbers. Higher channel and sample numbers

increase the computation time for ICA processing because of the

greater computational complexity. In [24],[35],[36], the FPGA

implementations can only achieve 2-channel ICA processing for

speech signals. In [37],[38],[39], the proposed hardware

architectures can perform ICA processing with a channel number

of 4. In [40],[41],[42], 8-channel ICA implementations are

reported. In [43],[44], the ICA implementation can achieve 16-

channel processing. Thirty-two–channel convolutive ICA is first

implemented on FPGA and applied to real-world signals in [45].

However, the post-layout results of the design are not reported.

Another 32-channel ICA implementation on FPGA used for

electroencephalogram (EEG) signal processing is reported in [46],

but the implementation information is currently not accessible. In

the present study, the proposed hardware implementation of

Infomax ICA can decompose MEG signals with a channel number

of 25, which is parameterized and can be scaled to applications

with channel numbers > 25.

Speed is also an important criterion for evaluating a hardware

implementation of ICA. The ICA design implemented in [36] and

[45] works at the operating frequencies of 12.3 MHz and 50 MHz,

respectively. The implementation in [36] is as short as 0.003 s for

lower-dimension ICA computation, while the realization in [45]

takes >60 s for adaptive noise canceling. A parallel ICA is

implemented on FPGA in [37],[38]: it has the operating frequency

of 20.2 MHz used for hyperspectral image analysis. The 4-channel

Infomax ICA is implemented on FPGA in [39] with the operating

frequency of 68 MHz applied to EEG signal processing. In our

work, the operating frequency of the proposed ICA hardware

architecture is 100 MHz with the computation time of 1.72s.

The present work has greater resource consumption than previous

studies, as the existing implementations are only for signal

processing of much lower channel and sample numbers. The

processing capacity in the present study can be up to 25 channels

and 12,206 samples, which are both higher than previous

implementations. Additionally, our design can process data with

dimensions larger than 25 × 12,206, as it is adaptable.

Figure 4.1. Requirement coverage of ICA design

4.3 Results and analysis of artifact

rejection design

4.3.1 Results of artifact rejection design
Artifact components are identified and removed from recorded

signals using CTPS. The design is evaluated using the MEG data

which is windowed around the latency of the R-peak of the ECG

signal using a window size of 500 ms. Each data window consists

of 508 data points, which is of small volume and buffered in the

block RAM on FPGA. The CTPS modules first transform the data

into phase space using Hilbert transform, and then identify the

cardiac components.

Ocular components are identified by computing the Pearson linear

correlation between the MEG component and the reference EOG

signal and also between the template and the field maps.

Mathematically, the calculations mainly involve divisions and

vector–vector multiplications.

Tab. 4.3 shows summary of synthesis for the artifact rejection

implementation. There is a strong correlation between the resource

prediction model in Tab. 3.3 and Tab. 3.4 and the synthesis results.

Meanwhile, it is difficult for the Resource Model to obtain the

absolute accuracy in prediction, as the results of synthesis depend

on the optimization algorithms, e.g., logic replication, typically

exploited by modern synthesis tools for improving the timing

characteristics of synthesized designs.

The proposed artifact rejection hardware design is driven by a

system clock of 100 MHz; the data epochs (segments) during

CTPS computation are buffered in on-chip BRAM, which reduces

the memory access time. For ocular artifact rejection, the data

channels are pre-fetched, which improves the data access speed.

There is no data dependency between the covariance calculation

and the computation of the standard deviations, which largely

improves the computation parallelism. The design adopts the

pipeline structure, further enhancing the throughput. Thus, the

computation modules are fully occupied. The data is processed by

one module, while the results are transmitted to the next unit for

further computation in every clock cycle. Additionally, the

computations are designed to overlap with the memory access to

make best use of the pipelined architecture. The execution time is

measured for each data segment during CTPS computation, and the

average is 223 clock cycles. In the testing, an average two

components were identified as related to cardiac activity. For

ocular artifact rejection, the execution time is measured for each

data channel, and the average is 106 clock cycles. In the testing, 1–

3 components (average, 1.5) were identified as being attributed

ocular activity. The rejection performance measure as introduced

in [10] is used to evaluate the cardiac artifact rejection results.

Cardiac artifacts were sufficiently removed with the hardware

implementation of CTPS while keeping the signal of interest

unchanged.

Table 4.3: Resource utilization of artifact rejection design

Item Occupied Available Percentage

Number of slices 15742 56880 27%

Number of DSP blocks 95 576 16%

4.3.2 Result analysis and discussion

The requirements of CTPS design are satisfied in two ways. On the

one hand, traceability between the requirements and different

models is established, which ensures requirement coverage during

the system modeling process. The requirements (CardiacArtifact

and Method) of CTPS design are traced to model elements

including a state machine model CAStructureAllocate, a use case

diagram CAIdentification and a sequence diagram

ArtifactIdentification, which are colored yellow in Fig. 4.2. The

other traced model elements are not shown for the readability of

the diagram.

Subsequently, the CTPS is realized and verified on an FPGA board

to further cover the relevant requirements. The covered

requirements by CTPS design are colored green in Fig. 4.2. The

hardware implementation of CTPS ensures the traceability of

requirements to the final realization.

Again, the requirements of temporal and spatial correlation design

(OcularArtifact, IdentifyEyeBlinks and Method) and data cleaning

(DataCleaning) are first traced to different model elements

guarantee the requirements coverage in system modeling. They are

refined by tracing to both structural and behavioral diagrams.

Secondly, the requirements of temporal and spatial correlation and

data cleaning are covered by implementation and verification on an

FPGA board. The covered requirements in this section are colored

green in Fig. 4.3. The requirements covered in previous sections

are colored yellow in Fig. 4.3. Up to now, all the requirements of

MEG signal pre-processing are fully covered, not only by

traceability to different system model elements, but also by

realization and verification on an FPGA board.

Real-time capability is achieved in this work by using a parallel

computation platform FPGA, which makes best of the parallelism

of the matrix-matrix multiplications or matrix-vector

multiplications in MEG signal pre-processing. The computation

modules of lower levels are designed in the pipeline structure,

further enhancing the throughput. Data cleaning is performed in

parallel to estimating a new demixing matrix (see Fig. 2.8), leading

to the possibility to massively parallelize computation on FPGA.

The data cleaning procedure is performed with a time delay of less

than 1 ms.

In [10], MEG data is tested on the Intel i5-2410M Core with the

power dissipation of 35W. The reported processing time, including

data decomposition and artifact rejection, is 1.1 seconds without

taking the data training into account. The average computation

time in this study is 1.4 seconds but with much lower power

dissipation (maximum 7.5W). The CPU implementation (on an

Intel Core i5-2410M, 2.3 GHz, 6 GB RAM) is not application

specific and often slowed by the computation tasks of other threads.

While the FPGA dedicated design has advantages in terms of both

speed and resource consumption.

As described in section 5.1.1, signal processing systems with a

delay of less than 200 ms are considered to be real-time in this

work. Different computation times for real-time feedback design

are indicated in previous studies. In the studies in [9],[13],[47],

real-time designs a feedback update every 500 ms are reported. A

real-time system with a feedback update every 300 ms is provided

in [12]. Despite the differences in feedback delay, all authors

described their systems as being real-time capable. In this work

and in [10], the artifact rejection, not including data decomposition

and data training, takes < 1 ms. In summary, the hardware

implementation of MEG signal pre-processing offers effective

real-time capabilities, with low power dissipation, high speed and

reasonable resource consumption.

Figure 4.2. Requirement coverage of CTPS design

Figure 4.3. Requirement coverage of temporal and spatial correlation

V Conclusion
This work introduces an RDD & MBD methodology for real-time

computation systems. It handles the ever-increasing complexity of

computation systems by increasing the abstraction level in the

design.

The present work focused on the design of a SoC capable of

performing real-time artifact rejection in MEG data processing,

because previous studies have either neglected or simplified real-

time artifact rejection [9],[12],[13],[48]. The reconfigurable

hardware designs of MEG signal pre-processing here were

parameterized and could be modified externally within the same

hardware architectures to be generally applicable to other MEG

systems.

The MEG-2.0 RT project aims to develop an MEG real-time

signal-processing device to be used as an add-on to existing MEG

systems, thus enabling, for example, neurofeedback applications.

The system model of the real-time MEG signal processing chain

developed here and the real-time artifact rejection implementation

that complied with the system/project requirement model is a first

and essential component of the Jülich Research Center MEG-2.0

RT project.

As part of the future work, source localization is an important

approach to image the electrical activities of deep brain structures

in both fields of EEG and MEG. The RDD & MBD approach is

ideal working on the source localization problem, because real-

time and embedded systems can be easily designed using SysML

[49]. In this context, the high level exploration process helps the

developer effectively manage the design complexities.

Additionally, the choice of high-speed hardware platforms well

meets the demand of providing data processing results in real-time.

Acknowledgment
The presented research is supported by China Scholarship Council

(CSC), in cooperation with the Central Institute of Engineering,

Electronics and Analytics - Electronic Systems (ZEA-2) and the

Institute of Neuroscience and Medicine (INM-4) at

Forschungszentrum Jülich GmbH.

References
[1] Weilkiens, Tim. Systems engineering with SysML/UML:

modeling, analysis, design. Elsevier, 2011.

[2] Office of the Deputy under Secretary of Defense for

Acquisition and Technology, Systems and Software

Engineering. Systems Engineering Guide for Systems of

Systems, Version 1.0. Washington, DC: ODUSD (A&T) SSE,

2008.

[3] Chen, Tao, et al. "Model-Driven Development Methodology

Applied to Real-Time MEG Signal Preprocessing System

Design." 2017 European Modelling Symposium (EMS). IEEE,

2017.

[4] Suslov, Sergey. Parallelisation Potential of Image

Segmentation in Hierarchical Island Structures on

Hardwareaccelerated Platforms in Real-time Applications.

Forschungszentrum Jülich, 2013.

[5] Suslov, Sergey. Presentation: SysML for computing

controlling system development, https://www.fz-

juelich.de/SharedDocs/Downloads/ZEA/ZEA-

2/DE/SysML.pdf?__blob= publicationFile, 2017.

[6] Biomagnetic Technologies Inc., “MAGNES 2500 WH-X and

3600 WH Hardware Reference Manual,” BTi San Diego,

California, USA, 2006.

[7] Dammers, Jürgen, et al. "Integration of amplitude and phase

statistics for complete artifact removal in independent

components of neuromagnetic recordings." IEEE transactions

on biomedical engineering 55.10 (2008): 2353-2362.

[8] Breuer, Lukas, et al. "Ocular and cardiac artifact rejection for

real-time analysis in MEG." Journal of neuroscience methods

233 (2014): 105-114.

[9] Sudre, Gustavo, et al. "rtMEG: a real-time software interface

for magnetoencephalography." Computational intelligence

and neuroscience 2011 (2011): 11.

[10] Breuer, Lukas, “Identification of Neuromagnetic Responses

for Real-Time Analysis in Magnetoencephalography”, RWTH

Aachen University, Aachen, Germany, 2015.

[11] Rongen, H., V. Hadamschek, and M. Schiek. "Real time data

acquisition and online signal processing for

magnetoencephalography." Real Time Conference, 2005.

14th IEEE-NPSS. IEEE, 2005.

[12] Buch, Ethan, et al. "Think to move: a neuromagnetic brain-

computer interface (BCI) system for chronic stroke." Stroke

39.3 (2008): 910-917.

[13] Mellinger, Jürgen, et al. "An MEG-based brain–computer

interface (BCI)." Neuroimage 36.3 (2007): 581-593.

[14] Esch, et al. "MNE Scan: Software for real-time processing of

electrophysiological data." JOURNAL OF NEUROSCIENCE

METHODS (2018).

[15] Dinh, Christoph et al. 2015. "Real-Time MEG Source

Localization Using Regional Clustering." Brain Topography

28.6(2015):771-784.

[16] Rosenberg, Doug, and Sam Mancerella. "Embedded systems

development using SysML: an illustrated example using

enterprise architect." Sparx Systems Pty Ltd and ICONIX

(2010): 4-14.

[17] Hämäläinen, Matti, et al. "Magnetoencephalography—theory,

instrumentation, and applications to noninvasive studies of the

working human brain." Reviews of modern Physics 65.2

(1993): 413.

[18] Dale, Corby L., et al. "Timing is everything: neural response

dynamics during syllable processing and its relation to higher-

order cognition in schizophrenia and healthy comparison

subjects." International Journal of Psychophysiology 75.2

(2010): 183-193.

[19] Lauer, Richard T., et al. "Applications of cortical signals to

neuroprosthetic control: a critical review." IEEE transactions

on rehabilitation engineering 8.2 (2000): 205-208.

[20] Object Management Group. OMG System modeling

Language (OMG SysML), v1.3. June 2012. Available at

http://www.omg.org/spec/SysML/1.3/.

[21] Zamrini, Edward, et al. "Magnetoencephalography as a

putative biomarker for Alzheimer's disease." International

journal of Alzheimer’s disease 2011 (2011).

[22] Friedenthal, Sanford, Alan Moore, and Rick Steiner. A

practical guide to SysML: the system modeling language.

Morgan Kaufmann, 2014.

[23] Delligatti, Lenny. SysML distilled: A brief guide to the

system modeling language. Addison-Wesley, 2013.

[24] Sattar, F., and C. Charayaphan. "Low-cost design and

implementation of an ICA-based blind source separation

algorithm." ASIC/SOC Conference, 2002. 15th Annual IEEE

International. IEEE, 2002.

[25] Li, Zhongfeng, and Qiuhua Lin. "FPGA implementation of

Infomax BSS algorithm with fixed-point number

representation." Neural Networks and Brain, 2005.

ICNN&B'05. International Conference on. Vol. 2. IEEE,

2005.

[26] Wang, Jia-Ching, et al. "VLSI Design for Convolutive Blind

Source Separation." IEEE Trans. on Circuits and Systems

63.2 (2016): 196-200.

[27] Gupta, Suyog, et al. "Deep learning with limited numerical

precision." International Conference on Machine Learning.

2015.

[28] Karamizadeh, Sasan, et al. "An overview of principal

component analysis." Journal of Signal and Information

Processing 4.03 (2013): 173.

[29] Shahrouzi, S. Navid, and Darshika G. Perera. "Dynamic

partial reconfigurable hardware architecture for principal

component analysis on mobile and embedded devices."

EURASIP Journal on Embedded Systems 2017.1 (2017): 25.

[30] Chen, Tao, et al. " Real-time MEG data-processing unit for

online medical imaging and brain-computer interface: a

model-based approach." International journal of

bioelectromagnetism : IJBEM 209.1 (2018): 39-42.

[31] A. J. Bell and T. J. Sejnowski, “An information-maximization

approach to blind separation and blind deconvolution,”

Neural Comput., vol. 7, no. 6, pp. 1129–59, Nov. 1995.

[32] Stephens, Michael A. "Use of the Kolmogorov-Smirnov,

Cramér-Von Mises and related statistics without extensive

tables." Journal of the Royal Statistical Society. Series B

(Methodological) (1970): 115-122.

[33] Smirnov, Nickolay. "Table for estimating the goodness of fit

of empirical distributions." The annals of mathematical

statistics 19.2 (1948): 279-281.

[34] Dammers, J rgen, and Michael Schiek. "Detection of artifacts

and brain responses using instantaneous phase statistics in

independent components." Magnetoencephalography. InTech,

2011.

[35] Charoensak, Charayaphan, and Farook Sattar. "A single-chip

FPGA design for real-time ICA-based blind source separation

algorithm." Circuits and Systems, 2005. ISCAS 2005. IEEE

International Symposium on. IEEE, 2005.

[36] Shyu, Kuo-Kai, et al. "Implementation of pipelined FastICA

on FPGA for real-time blind source separation." IEEE

transactions on neural networks 19.6 (2008): 958-970.

[37] Du, Hongtao, Hairong Qi, and Gregory D. Peterson. "Parallel

ICA and its hardware implementation in hyperspectral image

analysis." Independent Component Analyses, Wavelets,

Unsupervised Smart Sensors, and Neural Networks II. Vol.

5439. International Society for Optics and Photonics, 2004.

[38] Du, Hongtao, and Hairong Qi. "An FPGA implementation of

parallel ICA for dimensionality reduction in hyperspectral

images." Geoscience and Remote Sensing Symposium, 2004.

IGARSS'04. Proceedings. 2004 IEEE International. Vol. 5.

IEEE, 2004.

[39] Huang, Wei-Chung, et al. "FPGA implementation of 4-

channel ICA for on-line EEG signal separation." Biomedical

Circuits and Systems Conference, 2008. BioCAS 2008. IEEE.

IEEE, 2008.

[40] Van, Lan-Da, Di-You Wu, and Chien-Shiun Chen. "Energy-

efficient FastICA implementation for biomedical signal

separation." IEEE transactions on neural networks 22.11

(2011): 1809-1822.

[41] Yang, Chia-Hsiang, Yi-Hsin Shih, and Herming Chiueh. "An

81.6 uW FastICA Processor for Epileptic Seizure Detection."

IEEE transactions on biomedical circuits and systems 9.1

(2015): 60-71.

[42] Shih, Wei-Yeh, et al. "An effective chip implementation of a

real-time eight-channel eeg signal processor based on on-line

recursive ica algorithm." Biomedical Circuits and Systems

Conference (BioCAS), 2012 IEEE. IEEE, 2012.

[43] Roh, Taehwan, et al. "A wearable neurofeedback system with

EEG-based mental status monitoring and transcranial

electrical stimulation." IEEE transactions on biomedical

circuits and systems 8.6 (2014): 755-764.

[44] Kuriakose, Jini, and Jayan K. George. "Multilevel Power

Optimization for ICA Processor."

[45] Kim, Chang-Min, et al. "FPGA implementation of ICA

algorithm for blind signal separation and adaptive noise

canceling." IEEE Transactions on Neural Networks 14.5

(2003): 1038-1046.

[46] Chen, Tsan-Yu. A System-on-Chip Design of 32-Channel

EEG Acquisition System with Automatic Artifacts Rejection.

MS Work. National Chiao Tung University, 2016. Web. 20

Jun. 2018.

[47] Florin, Esther, Elizabeth Bock, and Sylvain Baillet. "Targeted

reinforcement of neural oscillatory activity with real-time

neuroimaging feedback." Neuroimage 88 (2014): 54-60.

[48] Hesse, C., et al. "On the development of a brain-computer

interface system using high-density magnetoencephalogram

signals for real-time control of a robot arm." (2007).

[49] Basit-Ur-Rahim, Muhammad Abdul, Fahim Arif, and Jamil

Ahmad. "Modeling of real-time embedded systems using

SysML and its verification using UPPAAL and DiVinE."

Software Engineering and Service Science (ICSESS), 2014

5th IEEE International Conference on. IEEE, 2014.

