SoftwareX 12 (2020) 100571

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX

0101

0000 1100

Original software publication

OWL2Go: Auto-generation of Go data models for OWL ontologies with &

integrated serialization and deserialization functionality

Stefan Dihling **, Lukas Razik ", Antonello Monti?

Check for
updates

2 Institute for Automation of Complex Power Systems at E.ON Energy Research Center of RWTH Aachen University, Mathieustr.

10, 52074 Aachen, Germany

b Institute of Energy and Climate Research, Energy Systems Engineering of Forschungszentrum Jiilich GmbH, 52425 Jiilich, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 2 March 2020

Received in revised form 10 July 2020
Accepted 10 July 2020

The Web Ontology Language (OWL) is a formal language for the description of terms and their
relationship in a certain domain. It enables information exchange among heterogeneous applications
and devices in a machine-readable format. However, in software development the usage of data models
is common. In order to facilitate the usage of ontologies encoded in OWL also in software development
we present OWL2Go. OWL2Go is a code-generator that parses an OWL ontology and generates a Go

gﬁﬁ%ﬁ'; package implementing a data model compliant with the ontology as well as a serializer and deserializer
OWL for conversion between the Go data model and Turtle or JSON-LD documents. We demonstrate the
Go generation process and the usage of the resulting Go package with the Smart Appliances REFerence
SAREF (SAREF) ontology.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version

Permanent link to code/repository used for this code version

Code Ocean compute capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

v1.1.0
https://github.com/ElsevierSoftwareX/SOFTX_2020_76

Apache License, Version 2.0 or MIT License

git

Go

imports module github.com/piprate/json-gold v0.3.0
https://git.rwth-aachen.de/acs/public/ontology/owl/owl2go
SDaehling@eonerc.rwth-aachen.de

1. Metivation and significance

Semantic interoperability is important for the integration of
distributed and heterogeneous applications. Ontologies enable
the formal description of a domain, the objects it contains and
their relationship. The Web Ontology Language (OWL) is the most
prominent language for expressing ontologies [1,2]. An emerging
field of application for ontologies is the Internet of Things (IoT) [3,
4].

OWL is based on the Resource Description Framework (RDF)
and RDF Schema (RDFS). RDF can be used to describe resource
relations in form of triples, consisting of subject, predicate and

* Corresponding author.
E-mail address: sdaehling@eonerc.rwth-aachen.de (S. Ddhling).

https://doi.org/10.1016/j.s0ftx.2020.100571

object [5]. Resources are identified by their unique International
Resource Identifiers (IRIs). In order to give further structure to the
knowledge expressed by RDF, it is complemented by RDFS [5,6].
RDFS adds the concept of classes. OWL builds upon RDFS and adds
the concept of restrictions [5]. A restriction can be used to add
properties to a class, restricting the values that can be assigned
to that property.

In software development data models are used to describe
the problem that the software aims to solve, together with its
domain. Data models are usually specific to a certain implemen-
tation and depend on the chosen programming language or data
storage mechanisms (databases). While many modeling features
of OWL also exist in object-oriented programming languages, e. g.,
inheritance, some constructs cannot be directly mapped due to
design characteristics of a specific programming language, e.g.,

2352-7110/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2 S. Ddhling, L. Razik and A. Monti / SoftwareX 12 (2020) 100571

static typing or lack of support for multiple inheritance [7]. In
order to enable interoperability and data exchange among ap-
plications within the same domain, two challenges have to be
overcome:

e A mapping between a given OWL ontology and a data model
is needed.

e Deserialization of a document, containing individuals, to in-
stances of the data structures defined by the mapping must
be enabled. Additionally, the inverse process of serializing a
set of instances to a document is required.

Different solutions for the mapping of OWL to a programming
language have been proposed in literature, typically for class-
based programming languages like JAVA [3,8-10]. An extensive
overview and classification can be found in [11]. The authors
distinguish three categories of methods for mapping OWL to
object-oriented programming languages. Applying this classifi-
cation, OWL2Go belongs to the second category of active-static
mappings. Software in this category translates the ontology to
code statements, once before compilation. Subsequently data can
be accessed and manipulated by means of an application pro-
gramming interface (API). Other concepts in that category are for
example [3,9,10]. These tools generate proxy classes according to
class definitions in an OWL ontology. The proxy classes offer an
API to manipulate underlying RDF triple sets or graph structures.
In case of [3] other third party tools are reused for that. While this
approach minimizes the code to be generated, it introduces an ad-
ditional procedure for interaction between the proxy classes and
the underlying triple store. OWL2Go eliminates this additional
effort. In [8] a mapping from OWL to JAVA is presented. Based on
an OWL ontology, code for JAVA classes and interfaces is auto-
generated. In contrast to the tools analyzed before, no underlying
graph or triple store is required. In OWL2Go the data is stored
directly in the generated data model, as well. However, OWL2Go
targets the programming language Go.

Go is a modern open-source programming language. It espe-
cially targets high performance applications for system level and
networking. That is why it is widely used in the area of cloud
computing and the IoT. One main difference between Go and
many other object oriented programming languages, is that Go
does not have a class and inheritance model [12]. OWL2Go offers
a methodology to mimic a class-like behavior, in order to enable
a mapping from the class-based OWL to Go. The importance of
Go in the domain of web applications and the possibility to map
OWL classes to Go, as described in this paper, motivate its use
as target programming language. A more detailed introduction of
Go and its relevance as well as its suitability for ontology-based
applications is discussed in Section 2.1.

Serialization and deserialization enable the exchange of data
in standardized format. Thereby, applications can interact with
each other and share knowledge, even if the data models specific
to each application differ. Previous implementations introduced
before tackle this challenge in different ways. In [8] the corre-
sponding feature is not discussed at all. In [3] the implementation
relies on third-party tools which implement a RDF triple store
and also provide serialization and deserialization. In OWL2Go this
functionality is directly supported by the generated Go pack-
age. Therefore, no third-party tool is necessary which reduces
dependencies and hence, eases the use of the generated package.

Regarding the challenges mentioned before, our contributions
are:

e a methodology for a mapping from the class-based OWL to
the non class-based Go, as well as the automatic generation
of a Go package which

e implements a data model compliant with the OWL ontology
and

e implements serialization / deserialization to [from the Turtle
(ttl)/JSON-LD document format.

Therefore, OWL2Go is a tool to ease and thereby further increase
the usage of ontologies in software development. OWL2Go en-
ables software developers and researches to facilitate the use of
ontologies. In order to do so they do not have to interact with
the description logic of OWL, i.e., the triples. Instead they use
the structures and methods, i.e., the API, generated by OWL2Go.
Therefore, the hurdle to develop ontology-based applications is
substantially decreased. This is identified as important techni-
cal requirement for the development of ontology-based applica-
tions [13].

One specific use case that has motivated the development of
OWL2Go is the Smart Appliances REFerence (SAREF) ontology [14,
15] which is formalized in OWL. SAREF was designed to allow in-
teroperability among heterogeneous IoT-devices in the household
area, supporting energy management at system level. The Euro-
pean Telecommunications Standards Institute (ETSI) has released
SAREF and further extensions as technical specification [16-19].
Despite the novelty of SAREF already some applications of it can
be found in literature [4,20,21].

While the methodology presented in this paper works for
any OWL ontology (subject to limitations described in Sec-
tion 2.4), we explain and demonstrate our concept using the
SAREF ontology.

2. Software description
2.1. The Go programming language

Go (not to be confused with GO!, the multi-paradigm language
used for knowledge representation tasks [22]) is a compiled lan-
guage which was developed especially for networked servers [12,
23] and therefore is also suitable for the IoT and cloud computing.
The syntax is C-like but it provides features of many other lan-
guages, e.g., native support for concurrency or automatic memory
management.

In the cloud computing area, popular tools such as Kuber-
netes [24] and Docker [25] are developed in Go. With cloud
computing and the IoT being emerging fields of application for
ontologies, the relevance of Go as popular programming language
in this field is evident.

The main challenge for mapping OWL to Go is the absence
of classes and inheritance in Go which is a key feature of OWL
and also most other object-oriented programming languages. Go
provides structs to define custom types. A similar effect as in
class-based inheritance can be achieved by embedding of structs.
A struct that embeds another struct automatically inherits the
fields defined by the embedded struct. As an orthogonal concept
Go offers interfaces. An interface consists of a set of method
declarations. Every struct (or native type) that implements these
methods implicitly also implements the interface. Interfaces can
be used to achieve a similar behavior as polymorphism in other
programming languages (e.g. C++). Also interfaces can be em-
bedded. An interface that embeds another interface declares the
methods of the embedded interface.

The mapping of the class-based OWL to Go is the main con-
tribution of this paper. In the following we present how Go
structs, interfaces and the concept of embedding can be used to
implement classes and inheritance as defined by OWL.

2.2. Software architecture
Fig. 1 shows the general workflow of the code generation pro-

cess for a given OWL ontology. In a first step, the OWL class and
property information has to be extracted. The ontology encoded

S. Ddhling, L. Razik and A. Monti / SoftwareX 12 (2020) 100571 3

OWL | extract map generate
OWL classes Go package
ontology

Fig. 1. Workflow of OWL2Go code generation.

Table 1
Mapping of OWL constructs to Go.
OWL OWL axiom (owl:, rdf(s):) Go construct
construct
Class A interface 4;
struct sA implements A
A subClassOf B interface A extends
interface B
Class

A intersectionOf B and C

interface A extends
interfaces Band C

A unionOf B and C

interfaces B and C
extend interface A

oneOf

enumeration: create class and individuals

allValuesFrom C,D someValuesFrom

hasValue xCardinality

Restriction (of
class A) on
Property B

C,D: allowed types

= base type of C,D
= common type of C,D

E:
F:
A={..
O [E
SetB ([JE) error
AddB (...E) error
DelB(...E) }
sA ={...
b map [string]F}

ool |}

domain B

add property A to class B as for restrictions

Property A range B

add B to allowed types of property

inverseOf B

add function call to AddB()and DelB() in
AddA () and DelA() functions and vice versa

SymmetricProperty

add function call to AddA()and DelA() in
AddA() and DelA() functions

Indvidual type

create individual when creating model

Ontology imports

get imported ontology and execute OWL2Go
for it

in ttl is used as an input for this step. Subsequently, these classes
and properties have to be mapped to Go. The final step is the
code generation for the Go package according to the previously
performed mapping. The resulting architecture and application
workflow of the generated package can be seen in Fig. 2. In
this section we will describe the single application parts while
Section 2.3 explains the functionalities. Section 2.4 states the
limits of our approach regarding the expressiveness of OWL.

Ontologies expressed in OWL specify three kinds of objects:
classes, properties and individuals. Ontologies describing classes
and properties are referred to as T-box ontologies. A T-box on-
tology describes the terminology to describe a domain. OWL2Go
maps classes and properties defined by a T-box ontology into a Go
data model. Individuals are part of a A-box ontology. A-box on-
tologies describe instances or individuals and their relationships.
They typically use the concepts introduced by a T-box ontology.
The Go package that is generated by OWL2Go can be used to
create instances of the resulting Go data model. Serialization
of these instances to ttl or JSON-LD yields a A-box ontology
compliant with the original T-box ontology.

The mapping for different OWL constructs is summarized in
Table 1. Some important constructs are described in more detail
below. One important aspect of OWL is the reuse of existing
ontologies. OWL ontologies can import other ontologies and built
upon their classes and properties. This is supported by OWL2Go.
In case an ontology is imported, its ttl document is retrieved and
the generation process is also executed for the imported ontology.

For each ontology a specific prefix is used for the naming of
classes and properties.

The SAREF ontology is used as an example to demonstrate
the mapping and the code generation. OWL2Go automatically
generates the code for SAREF as well as for the imported Time
ontologly [26]. The resulting Go package is provided as open
source.

2.2.1. Definition of an ontology model

In order to describe a set of objects and their relations to each
other, first the introduction of a Model datatype is necessary. The
definition of the Model type can be seen in Listing 1. It holds one
map for each defined class, mapping an IRI to the related object.
An object can be stored in multiple maps if its type is a derived
class. For example an object of type SarefAppliance would
be stored in mSarefAppliance, mSarefFunctionRelated and
mSarefDevice. Additionally, all objects are stored in mThing,.

A New function for each class is defined for the Model datatype.
This function creates a new instance of the class and adds this
instance to the maps corresponding to the class and all parent
classes (see Section 2.2.4). Moreover, functions to search for
specific objects and to delete them are implemented for the
Model type.

Ontologies often predefine standard individuals that are avail-
able to the user of the ontology. In order to automatically popu-
late the model with these individuals, the Model type offers the

1 https://git.rwth-aachen.de/acs/public/ontology/owl/saref.

4 S. Ddhling, L. Razik and A. Monti / SoftwareX 12 (2020) 100571

method CreateIndividuals to create them (Listing 1 line 9).

1 type Model struct {

2 mThing map[string] Thing

3 mSarefDevice map[string]SarefDevice

4 mSarefFunctionRelated map[string]
SarefFunctionRelated

5 mSarefAppliance map[string]SarefAppliance

6 R

7%}

8

9 func (mod *Model) CreateIndividuals() {

10 mod.NewSarefTask("https://w3id.org/saref#Washing
n)

11

12 }

Listing 1: Model data type.

The base class of all classes, generated with the concept de-
scribed in the next section, is the Thing class. It is implemented
as an interface that is embedded by every generated class. The
Thing class allows the execution of common functions, e.g., se-
rialization and deserialization, on all objects irrespective of their
specific type.

2.2.2. Classes

To mimic inheritance in Go, each OWL class is expressed as a
combination of one Go interface and one Go struct implementing
the interface. This combination is now referred to as Go class. The
interface declares methods for manipulating the class properties.
Every class inherits from the Thingclass. The interface of a Go
class has to extend all the interfaces of its parent classes, i.e., it
has to declare the same methods. This is achieved by embedding
the interface of a parent class. This way, instances of a Go class,
i.e., its struct, can be used as instances of parent classes.

An example for inheritance using Go interfaces and structs
is provided in Listing 2. Class saref:FunctionRelated is a
subclass of saref :Device. saref:Device has no parent class
specified by SAREF and hence, inherits from the Thing class.
All classes are expressed as one interface (Listing 2 lines 1, 5,
11). Each interface embeds the interface of its parent classes
(Listing 2 lines 6, 12). Listing 2 also shows the struct for the
saref:FunctionRelated class (Listing 2 line 15). This
struct implements all methods declared by the
corresponding interface and thereby, automatically implements
the interfaces of parent classes (Listing 2 lines 16-19).
As a result, *sSarefFunctionRelated can be used as
SarefFunctionRelated, SarefDevice and Thing,.

type Thing interface {
ThingMethod ()
}

type SarefDevice interface {
Thing
SarefDeviceMethod ()
IsSarefDevice ()

OOoONUTL A WN =

}

11 type SarefFunctionRelated interface {
12 SarefDevice
13 IsSarefFuntionRelated ()

15 type sSarefFunctionRelated struct {
}
16 func (res *sSarefFunctionRelated)
IsSarefFunctionRelated () { }
17 func (res *sSarefFunctionRelated) IsSarefDevice() {
}
18 func (res *sSarefFunctionRelated) SarefDeviceMethod
O A ¥
19 func (res *sSarefFunctionRelated) ThingMethod () {
}

Listing 2: Inheritance using Go interfaces and structs.

One special case is the definition of a class as an enumeration
of individuals (owl:oneOf). In this case the code for the class
is generated as described before. Additionally, the enumerated
individuals are created in the CreateIndividuals methods as
explained in Section 2.2.1.

2.2.3. Properties

The struct of a Go class contains one field for each property
of the OWL class. Classes contain properties that are assigned to
it either by means of a restriction or in a owl:domain axiom of
the property. The interface of the class declares methods to ma-
nipulate these properties. For properties with a cardinality of one,
only a Get and a Set function are declared. For properties with
greater cardinality Add and Delete functions are declared ad-
ditionally. For an owl:0bjectProperty wit cardinality greater
than one, the field in the belonging struct is of type map [string]
PropertyType. The key in the map is the IRI of the stored object.
An owl:DatatypeProperty has a literal type. These types are
mapped to primitive Go types such as string or int. In case the
multiplicity is greater than one slices of these types are used.

1 type SarefDevice interface {
SarefHasTypicalConsumption() []SarefProperty

3 SetSarefHasTypicalConsumption ([]SarefProperty)
error

4 AddSarefHasTypicalConsumption(...SarefProperty)
error

5 DelSarefHasTypicalConsumption(...SarefProperty)

6 .

7}

8

9 type sSarefDevice struct {

10 sarefHasTypicalConsumption map[string]
SarefProperty

11

12 }

13

14 func (res *sSarefDevice) SarefHasTypicalConsumption
() (out [lSarefProperty) {

15 out = make ([]SarefProperty, len(res.
sarefHasTypicalConsumption))

16 index := 0

17 for i := range res.sarefHasTypicalConsumption {

18 out [index] = res.sarefHasTypicalConsumption[
i]

19 index++

20 }

21 return

22 }

23

24 func (res *sSarefDevice)
SetSarefHasTypicalConsumption(in []
SarefProperty) (err error) {

25 res.sarefHasTypicalConsumption = make(map[string
]SarefProperty)

26 err = res.AddSarefHasTypicalConsumption(in...)

27 return

28 }

29

30 func (res *sSarefDevice)
AddSarefHasTypicalConsumption(in
SarefProperty) (err error) {

31 for i := range in {

32 if v, ok := in[i].(SarefEnergy); ok {

33 res.sarefHasTypicalConsumption[v.IRI()]
= v

34 continue

35 } else if v, ok := in[i].(SarefPower); ok {

36 res.sarefHasTypicalConsumption[v.IRI()]
= v

37 continue

38 }

39 err = errors.New("Wrong Property type.

Allowed types are

40 [Energy Power]l")

41 }

42 return

43 }

S. Ddhling, L. Razik and A. Monti / SoftwareX 12 (2020) 100571 5

45 func (res *sSarefDevice)
DelSarefHasTypicalConsumption(in ...
SarefProperty) {

46 for i := range in {

47 delete(res.sarefHasTypicalConsumption, in[i

1.IRIO)

48 }

49 return

50 }

Listing 3: Excerpt from Device class

OWL properties can be of multiple types. However, in most
programming languages a variable can only have one specific
type. Moreover, in OWL the type of a property can differ from
the type of the same property in the parent class. To cope with
these problems, each property is assigned three types during the
mapping: a base type, a common type and (possibly multiple)
allowed types. Listing 3 provides an example using the saref:
HasTypicalConsumption property of the saref :Device class.
The corresponding excerpt of the SAREF ontology can be seen in
Listing 4.

saref:Device rdf:type owl:Class ;
rdfs:subClass0f [rdf:type owl:Restriction ;
owl:onProperty saref:hasTypicalConsumption ;
owl:allValuesFrom [rdf:type owl:Class ;
owl:union0f (saref:Energy saref:Power)]

]
saref :Property rdf:type owl:Class .

saref :Energy rdf:type owl:Class ;
rdfs:subClass0f saref:Property .

saref :Power rdf:type owl:Class ;

1
2
3
4
5
6
7
8
9
10
11
12
13
14 rdfs:subClass0f saref:Property .

Listing 4: SAREF excerpt for Device class and
hasTypicalConsumption property.

The allowed types are all types specified within restrictions
or in owl:range statements of the OWL property. In case of
the example property, allowed types are saref:Energy and
saref :Power (Listing 4 line 5).

The common type is the common parent class of all allowed
types. The common parent class of saref :Energy and saref:
Power is saref :Property (Listing 4 lines 11, 14). It is used in
the related struct to define the property field (Listing 3 line 10).

The base type of a class’s property corresponds to the type of a
property in parent classes. Since the saref :Device class has no
parents, the base type in the example is also saref :Property.
All interface functions for property manipulation (Listing 3 line
2-5) use this type in order to be compatible with the interfaces
of parent classes.

SarefProperty is the interface of the Go class that corre-
sponds to saref:Property. SarefEnergy and SarefPower
are the interfaces of their Go classes. Since both classes
inherit from saref:Property, their interfaces embed
SarefProperty.

As sarefHasTypicalConsumption is of type
SarefProperty also other types that inherit from
SarefProperty could be inserted. However, within the Add-
function, type assertions are used to ensure that only allowed
types are stored for that property (Listing 3 line 34 and 37). In
case, a wrong type is used, an error is returned.

2.2.4. Individuals

OWL individuals are instances of classes. In order to cre-
ate instances each Go class has a New function that takes an
IRI and creates a new object of that class. Listing 5 shows the
NewSarefDevice method. It is defined for the *Model data type.

It ensures that no other resources with the same IRI exists (Listing
5 line 2) and creates a new *sSarefDevice (Listing 5 line 6).
This object is added to maps of the *Model variable for the
SarefDevice class and all its parents (in this case only Thing)
(Listing 5 line 7-8). Lastly, all property maps are created (Listing
5 line 9-10).

1 func (mod #*Model) NewSarefDevice(iri string) (ret
SarefDevice, err error) {

2 if mod.Exist(iri) {

3 err = errors.New("Resource already exists™")

4 return

5 ¥

6 res := &sSarefDevice{iri: iri}

7 mod.mSarefDevice[res.IRI()] = res

8 mod.mThing[res.IRI()] = res

9 res.sarefHasTypicalConsumption = make(map[string

1Property)

10

11 ret = res

12 return

13 }

Listing 5: New method for Device.

2.3. Software functionalities

The main functionality of the generated package is the pro-
vision of an ontology-compliant data model and serialization as
well as deserialization for interoperable data exchange among
applications. A graphical description of both processes is depicted
in Fig. 2.

For the deserialization process, a ttl or JSON-LD encoded doc-
ument containing the description of individuals, i.e., a A-box
ontology, is the input and parsed into a graph structure. Within
this graph, the edges are searched for the keyword rdf :type.
If the object of the triple, that corresponds to the edge, is one
of the classes defined by the T-box ontology, the triple expresses
the creation of an individual. All individuals that can be found are
created in the model and filled with the properties as specified in
the document.

For the serialization process, the steps are executed inversely.
First, one graph node for every individual is created. For this
purpose, the model’s map containing all Things is used (see
Listing 1 line 2). An edge with name rdf : type is added to these
nodes. The object is the type of the individual. Additionally, one
edge with name rdf :type and object owl:NamedIndividual
is created. After this, one edge for each property of that individ-
ual is added to the graph. Finally the ttl/JSON-LD document is
created from the resulting graph.

2.4. Limitations of OWL2Go

OWL2Go targets OWL-DL ontologies. OWL-DL is an extension
to OWL-Lite and adds further constructs, e.g., enumerated classes
or property values. Another extension of OWL-DL is OWL-Full,
which allows that a class can also be an individual or property.
A detailed description of the different OWL flavors can be found
in [27].

Axioms stating equality, inequality or uniquness (equivalent-
Class, equivalentProperty, sameAs, differentFrom, AllDifferent,
disjointWith) are not addressed by OWL2Go. The reason for this
is, that such equivalence statements cannot be directly treated
in object-oriented languages since different classes or structs are
disjoint by design [11]. Hence, this is not a specific limitation
of OWL2Go but rather a limitation of the equivalence between
OWL and object-oriented programming languages. However, the
use of such axioms in an ontology does not cause an error if
applied to OWL2Go. Instead these axioms are simply ignored

6 S. Ddhling, L. Razik and A. Monti / SoftwareX 12 (2020) 100571

RDF Graph

deserialize

N

4

serialize

Ontology
model

map[IRI]Thing

Turtle /
JSON-LD

document

exchange | 3rd party

Ontology

objects

Fig. 2. Serialization and deserialization with generated Go package.

by OWL2Go. For example, in case two classes are related by an
owl:equivalent axiom, both classes would be translated to Go
independently.

Another limitation of the proposed mapping is the interpreta-
tion of the open-world assumption, that is typically associated
with OWL ontologies. The open-world assumptions says, that
assumptions cannot be made based on the absence of knowledge.
This is different in data modeling in programming languages. If an
entity (instance) is not present in the data model, it is assumed to
be not existent in general. Regarding OWL2Go this difference is
of importance in case a property is lacking an owl : range axiom.
While this is in line with the open-world assumption, it is not
in line with the fact that for the mapping to Go a specific type
is required for the property. In this case OWL2Go would use the
Thing class as type for this property. Thereby, it is possible to
assign an instance of any class, that is defined by the ontology, to
this property.

Another case in which the open-world assumption cannot be
directly mapped to Go is the lack of the owl:domain axiom for
a property. OWL2Go will add the respective property only to
classes that are related to the property by means of a restriction.
If no class contains a restriction regarding this property, the
property will be ignored by OWL2Go as it cannot be linked to
any defined class.

Due to the given limitations the generated Go model and the
OWL ontology used for generation are in general not semantically
equivalent. OWL ontologies can be more expressive than their
corresponding Go data model. However, the Go data model does
not contradict with the ontology. Therefore, it represents a subset
of representable knowledge compared to the OWL ontology. It
should also be noted that the limitations listed above might not
be relevant for a specific ontology. For example, the SAREF ontol-
ogy does not use axioms that are not handled by OWL2Go and all
properties are clearly linked to classes by means of range, domain
axioms and/or restrictions. In addition to SAREF we have suc-
cessfully tested OWL2Go with the NASA Air Traffic Management
Ontology (atmonto) [28], which consists of five T-box ontologies.

3. Illustrative examples

The following example using the SAREF ontology comprises
all relevant features of the mapping and code generation process
explained above. The example demonstrates the entire process
of using a OWL2Go-generated Go package. The first step is the
deserialization from a ttl document, containing a A-box ontology
compliant with SAREF. This document could be retrieved from
another application. Afterwards, the instances created by the de-
serialization process, are manipulated using the API generated by
OWL2Go. In a last step the instances are serialized to a JSON-LD
document.

In the first step, a ttl-encoded SAREF document is deserialized.

1 G@prefix saref: <https://w3id.org/saref#> .

2 <http://example.com#dev> a saref :Appliance ;

3 saref:accomplishes <http://example.com#task> ;

4 saref :hasTypicalConsumption <http://example.com#
pow> ;

5 saref :measuresProperty <http://example.com#pow>

6 <http://example.com#pow> a saref :Power .

7 <http://examp1e.com#task> a saref:Task ;

8 saref:isAccomplishedBy <http://example.com#dev>

Listing 6: Input ttl file

Listing 6 shows the input ttl document with the definition of
a saref:Appliance, a subclass of saref :Device, and a saref
:Power which is a subclass of saref:Property. The device
and the property are related by saref :measuresProperty and
saref :hasTypicalConsumption. These relations are defined
by the saref:Device class. Hence, the example shows that
inherited properties are properly used by derived classes. Also the
correct usage of saref:hasTypicalConsumption, which can
be of two distinct types (i.e. saref : Power and saref :Energy),
is demonstrated. Additionally, the example also contains a saref
:Task object, task. This is related to dev by both, the saref
raccomplishes and the inverse saref:isAccomplishedBy
property. The corresponding model state after deserialization is
presented in Fig. 3.

The model is extended by adding a saref:Measurement.
Relations among the objects are added in conformance to the
specification. The measurement relates to the power property,
has a value and a unit. Moreover, the task object is deleted from
the model to demonstrate proper deletion of both relations with
dev.

The code for the given procedure is provided in Listing 7. Fig. 4
highlights the new model state.

package main

1
2
3 import (
4 "git.rwth-aachen.de/acs/public/ontology/owl/

saref/pkg/ontology"

5 "os"

6)

7

8 func main() {

9 var mod *ontology.Model

10 var file *os.File

11

12 file, _ = os.0Open("input.ttl")

13 mod, _ = ontology.NewModelFromTTL(file)

14 file.Close()

15

16 meas, _ := mod.NewSarefMeasurement ("http://
example.com#meas ")

17 meas.SetSarefHasValue (3.14)

18 dev := mod.SarefDevice("http://example.com#dev")

S. Ddhling, L. Razik and A. Monti / SoftwareX 12 (2020) 100571 7

Appliance

rdf:type (hasTypicalConsumption /measuresProperty

accomplishes YsAccomplishedBy

Fig. 3. State of model after deserialization.

dev [0] . AddSarefMakesMeasurement (meas)

pow := mod.SarefPower ("http://example.com#pow")

meas .AddSarefRelatesToProperty (pow [0])

pow [0] . AddSarefRelatesToMeasurement (meas)

unit, _ := mod.NewSarefPowerUnit("http://example
.com#kilowatt ")

meas.AddSarefIsMeasuredIn(unit)

task := mod.SarefTask("http://example.com#task")

mod.DeleteObject (task [0])

file, _ = os.Open("output.jsonld")
mod.ToJSONLD (file)
file.Close ()

31 return
32 r

Listing 7: Code for example application.

The last step is serialization of the new model. Listing 8 pro-

vides the resulting JSON-LD document.

"@id": "http://example.com#dev",
"@type": ["https://w3id.org/saref#Appliance",
"http://www.w3.0rg/2002/07/owl#NamedIndividual "]

"https://w3id.org/saref#hasTypicalConsumption":

[{"@id": "http://example.com#pow"}],
"https://w3id.org/saref#makesMeasurement ":

[{"@id": "http://example.com#meas"}],
"https://w3id.org/saref#measuresProperty":

[{"@id": "http://example.com#pow"}]

"@id": "http://example.com#kilowatt",
"@type": ["https://w3id.org/saref#PowerUnit",
"http://www.w3.0rg/2002/07/owl#NamedIndividual "]

"@id": "http://example.com#meas",
"@type": ["https://w3id.org/saref#Measurement",
"http://www.w3.0rg/2002/07/owl#NamedIndividual "]

"https://w3id.org/saref#hasValue":
[{"@type": "http://www.w3.0rg/2001/XMLSchema#
double", "@value":"3.14"}],
"https://w3id.org/saref#isMeasuredIn":
[{"@id": "http://example.com#tkilowatt "}],
"https://w3id.org/saref#relatesToProperty":
[{"@id": "http://example.com#pow"}]

"@id": "http://example.com#pow ",
"@type": ["https://w3id.org/saref#Power",
"http://www.w3.0rg/2002/07/owl#NamedIndividual "]

"https://w3id.org/saref#relatesToMeasurement ":
[{"@id": "http://example.com#meas "}]

Listing 8: Output JSON-LD file.

3.1. Performance evaluation

A performance evaluation is necessary in order to ensure that
the use of OWL2Go does not impose a bottleneck. This is done in
two steps. First the performance of OWL2Go itself is evaluated.
While OWL2Go has to be executed only once to generate the
package for a given ontology, its execution time should remain
within reasonable boundaries. In a second step the performance
of the generated package is evaluated. We use the package for the
SAREF ontology again. This package is used during runtime of the
ontology application. Hence, execution times for common tasks,
such as serialization and deserialization, are of importance. The
following assessment identifies the main factors which influence
execution times in both steps.

For the performance evaluation of OWL2Go four different in-
put T-box ontologies are created. These ontologies define an
increasing number of classes. Within each ontology every class is
related to one other class using a property. OWL2Go is executed
for all four ontologies. The resulting execution times are depicted
in Fig. 5. OWL2Go maps each OWL class to a Go class and
generates a corresponding interface and struct as well as methods
defined for the interface, as described in Section 2. Hence, the
main influence for the complexity of the problem is the number
of classes. Since the same procedure has to be executed for each
class, a linear increase of the execution time results.

For the performance evaluation of the generated SAREF pack-
age four different input A-box ontologies containing a varying
number of individuals are used. All individuals are of type SAREF
:Device and relate to one other device by means of the SAREF
:consistsOf property. A simple Go program is implemented
which deserializes the input A-box ontology and subsequently
serializes it back to a ttl document. The execution times for all
four ontologies is shown in Fig. 5. In the deserialization process
an instance of a Go struct is created and the properties, i.e, the
relations to other individuals, are added. For the serialization pro-
cess each Go instance is traversed and the triples corresponding
to the individual creation and its relation to other individuals are
created. As a result both processes depend linearly on the number
of individuals.

The underlying problem for both, OWL2Go itself and the use of
the resulting Go package for deserialization and serialization, is of
linear complexity and also the measured execution times increase
accordingly. Therefore, both steps of the performance evalua-
tion indicate that our approach does not add any unnecessary
overhead.

4. Impact

The general mapping from OWL to a modern programming
language in this work can inspire research activities in the In-
formatics area. This can affect mappings of ontologies to pro-
gramming languages as already done for OWL in case of Java [8]

8 S. Ddhling, L. Razik and A. Monti / SoftwareX 12 (2020) 100571

Appliance

rdf:type (hasTypical Consumption)measuresProperty

imakesMeasurement

Measurement

PowerUnit

Fig. 4. State of model after manipulation.

—— OWL2Go —— SAREF

2 w0 p
R= i
= B
g 10%
e F
= B
2 L
= =
E 10

O =
) [
> L
[}

10°

102 10° 10
N

—
(=)
—

Fig. 5. Performance of OWL2Go (N: number of classes) and the SAREF package
(N: number of individuals).

but also for other ontologies [29]. Also general questions could
be investigated. For example, how ontology languages can be
integrated in programming languages avoiding the need of gener-
ators producing source code for handling machine-representable
ontologies. Furthermore, the generated code for common ontolo-
gies, e.g., SAREF, as open-source software is expected to help
other researchers to write interoperable applications. One possi-
ble use case from the authors’ background is energy management
systems in Smart Grids using IoT. However, also many other IoT
use cases exist [30]. Consequently, research progress between
multiple entities on a common data basis can be accelerated as
results of different tools being comparable.

The auto-generated code for SAREF and the imported Time
ontology comprises more than twenty five thousand lines of code.
A manual implementation of that size would be error prone and
time consuming. Moreover, the code generation process can sim-
ply be repeated in case the specification changes. No additional
manual rework would be necessary.

The code generation for SAREF is used in the German research
project ENSURE [31]. There a cloud-based platform for the man-
agement of flexibility in electrical distribution grids is developed.
The concept of this platform is based on a multi-agent system
approach [32]. SAREF is used to describe the flexible devices and
their capabilities. Multi-agent systems especially rely on com-
munication. For information exchange among agents a shared
ontology is crucial. The package generated by OWL2Go enables
the agent software developer to use SAREF without the need to
understand OWL. Instead the developer manipulates objects of a
data model and exchanges its current state by means of automatic
serialization [deserialization to [from a standardized serialization
format, as shown in the example before.

Conclusions

We present a methodology for the mapping of OWL to the
programming language Go. Based on this methodology we im-
plemented OWL2Go which auto-generates a Go data model com-
pliant with a given ontology. That data model can be modified
by simple Go instructions without OWL knowledge. Additionally,
Go objects can be serialized to ttl /JSON-LD and deserialized from
ttl / JSON-LD to objects.

OWL2Go eases the use of ontologies by software developers
and researchers. Thereby, it contributes to increase the utilization
of ontologies for knowledge expression.

In future work, other serialization formats than ttl and JSON-
LD, such as RDF/XML, could be supported by OWL2Go.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by the German Federal Ministry
of Education and Research in the project ENSURE (Grant No.
03SFK1C0) and by the German Federal Ministry of Economic
Affairs and Energy in the project AGENT (Grant No. 03ET1495A).

S. Ddhling, L. Razik and A. Monti / SoftwareX 12 (2020) 100571 9

References

[1

(2]
3

[4

[5

[6

(7

8

[9

[10]

(1]

(12]

[13]

(14]

[15]
[16]

[17]

Horrocks I, Patel-Schneider PF, van Harmelen F. From SHIQ and RDF
to OWL: the making of a web ontology language.] Web Semant
2003;1(1):7-26.

W3C OWL Working Group. OWL 2 web ontology language document
overview (second edition). 2012, https://www.w3.org/TR/owl2-overview/.
Kaed CE, Ponnouradjane A. A model driven approach accelerating ontology-
based IoT applications Development. In: Semantic interoperability and
standardization (SIS-IoT) workshop part of the 13th semantics conference;
2017.

Daniele L, Solanki M, den Hartog F, Roes]. Interoperability for smart
appliances in the [oT world. In: The semantic web - ISWC 2016. Lecture
notes in computer science, 2016, p. 21-9.

Allemang D, Hendler J. Semantic web for the working ontologist: Effective
modeling in RDFS and OWL. United States: Elsevier; 2011.

Brickley D, Guha R. RDF Schema 1.1. 2014, https://www.w3.0org/TR/2014/
REC-rdf-schema-20140225.

Goldman NM. Ontology-oriented programming: Static typing for the in-
consistent programmer. In: The semantic web - ISWC 2003. Lecture notes
in computer science, Springer; 2003, p. 850-65. http://dx.doi.org/10.1007/
978-3-540-39718-2_54.

Kalyanpur A, Pastor DJ, Battle S, Padget]. Automatic mapping of OWL on-
tologies into Java. In: Proceedings of the sixteenth international conference
on software engineering & knowledge engineering; 2004. p. 98-103.
Voélkel M, Sure Y. RDFReactor - from ontologies to programmatic data
access. In: international semantic web conference (ISWC); 2005.
Chevalier F. Autordf - using OWL as an object graph mapping (OGM)
specification language. In: The semantic web. 2016, p. 151-5.

Baset S, Stoffel K. Object-oriented modeling with ontologies around:
A survey of existing approaches. Int] Softw Eng Knowl Eng
2018;28:1775-94.

Donovan AA, Kernighan BW. The Go programming language. United States:
Addison-Wesley Professional; 2015.

Gyrard A, Serrano M, Patel P. Building interoperable and cross-domain
semantic web of things applications. In: Managing the web of things.
Boston: Morgan Kaufmann; 2017, p. 305-24. http://dx.doi.org/10.1016/
B978-0-12-809764-9.00014-7.

Daniele L, den Hartog F, Roes]. Created in close interaction with the
industry: The smart appliances reference (SAREF) ontology. In: Formal
ontologies meet industry: 7th international workshop, vol. 225; 2015.
SAREF Ontology documentation. 2016, http://ontology.tno.nl/saref].
ETSITS 103 264 v211. SmartM2M; smart appliances; reference ontology
and oneM2M mapping. 2017, https://www.etsi.org/deliver/etsi_ts/103200_
103299/103264/02.01.01_60/ts_103264v020101p.pdf.

ETSITS 103 410-1. SmartM2M; smart appliances extension to SAREF;
part 1: energy domain. 2017, https://www.etsi.org/deliver/etsi_ts/103400_
103499/10341001/01.01.01_60/ts_10341001v010101p.pdf.

(18]

[19]

(20]

(21]

[22]

(23]
(24]

(25]

(26]
(27]
(28]

[29]

(30]

(31]

(32]

ETSITS 103 410-2. SmartM2M; smart appliances extension to SAREF;
part 2: environment domain. 2017, https://www.etsi.org/deliver/etsi_ts/
103400_103499/10341002/01.01.01_60/ts_10341002v010101p.pdf.

ETSITS 103 410-3. SmartM2M; smart appliances extension to SAREF; part
3: building domain. 2017, https://www.etsi.org/deliver/etsi_ts/103400_
103499/10341003/01.01.01_60/ts_10341003v010101p.pdf.

Moreira], van Sinderen M, Pawlowski W, Daniele L, Wasielewska K,
Ganzha M, et al. Towards IoT platforms’ integration: Semantic translations
between W3C SSN and ETSI SAREF. In: Workshop semantic interoperability
and standardization in the IoT; 2017.

Esnaola-Gonzalez 1, Diez FJ, Berbakov L, Tomasevic N, Storek P, Cruz M,
et al. Semantic interoperability for demand-response programs: RESPOND
project’s use case. In: 2018 global internet of things summit (GIoTS); 2018.
p. 1-6.

Clark KL, McCabe FG. Go! for multi-threaded deliberative agents. In:
Declarative Agent Languages and Technologies. Lecture Notes in Computer
Science, Berlin, Heidelberg: Springer; 2004, p. 54-75. http://dx.doi.org/10.
1007/978-3-540-25932-9_4.

The Go programming language. https://golang.org/.

The Kubernetes Authors. What is Kubernetes? - Kubernetes. https://
kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

Boettiger C. An introduction to docker for reproducible research. SIGOPS
Oper Syst Rev 2015;49(1):71-9, http://doi.acm.org/10.1145/2723872.
2723882.

Hobbs JR, Pan F. An ontology of time for the semantic web. ACM Trans
Asian Lang Inf Process 2004;3(1):66-85.

W3C OWL Working Group. OWL Web ontology language overview. 2004,
https://www.w3.org/TR/owl-features/.

Keller R. The NASA air traffic management ontology (atmonto). 2018,
https://data.nasa.gov/ontologies/atmonto/index.html.

Razik L, Mirz M, Knibbe D, Lankes S, Monti A. Automated deserializer
generation from CIM ontologies: CIM++—an easy-to-use and automated
adaptable open-source library for object deserialization in C++ from
documents based on user-specified UML models following the common
information model (CIM) standards for the energy sector. Comput Sci -
Res Dev 2018;33(1):93-103.

Vermesan O, Friess P, et al. Internet of things-from research and innovation
to market deployment, vol. 29. River publishers Aalborg; 2014.

ENSURE Geschaftsstelle Kopernikus-Projekt. Kopernikus Projekte: New
network structures. https://www.kopernikus-projekte.de/en/projects/new-
network-structures.

Ddhling S, Kolen S, Monti A. Swarm-based automation of electrical
power distribution and transmission system support. IET Cyber-Physical
Syst Theory Appl 2018;3(4):212-23. http://dx.doi.org/10.1049/iet-cps.2018.
5001.

