000878349 001__ 878349
000878349 005__ 20240712084529.0
000878349 0247_ $$2doi$$a10.1021/acsenergylett.0c00682
000878349 0247_ $$2Handle$$a2128/27021
000878349 0247_ $$2altmetric$$aaltmetric:80842314
000878349 0247_ $$2WOS$$aWOS:000535176100039
000878349 037__ $$aFZJ-2020-02796
000878349 082__ $$a333.7
000878349 1001_ $$00000-0001-5037-4455$$aColetti, G.$$b0$$eCorresponding author
000878349 245__ $$aBifacial Four-Terminal Perovskite/Silicon Tandem Solar Cells and Modules
000878349 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2020
000878349 3367_ $$2DRIVER$$aarticle
000878349 3367_ $$2DataCite$$aOutput Types/Journal article
000878349 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611843774_14180
000878349 3367_ $$2BibTeX$$aARTICLE
000878349 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878349 3367_ $$00$$2EndNote$$aJournal Article
000878349 520__ $$aTen years after the first paper(1) on the properties of metal halide perovskite solar cells, their efficiency and stability have increased tremendously.(2) It was quickly realized that their application goes beyond the single-junction use. Indeed, perovskite cell technology, by virtue of its tunable bandgap and low sub-bandgap absorption, offers new opportunities for stacking solar cells of different bandgap in a multijunction device to overcome the fundamental Shockley–Queisser (SQ) efficiency limit of a single-junction device. Under AM1.5 irradiation, this limit is 33.7% for the optimal bandgap, and for perovskite with a normally somewhat higher bandgap of 1.55 eV it drops to 31%.(3,4) It is not expected that perovskite will exceed 26% single-junction efficiency.(5) For crystalline silicon solar cells (c-Si), including Auger recombination, the theoretical SQ limit is 29.4%.(6,7) Currently, single-junction silicon solar cells reached an efficiency in the lab of 26.7%;(8,9) while in mass production, solar cells are produced with efficiencies up to about 25%,(10) with main stream efficiencies of about 22%. The latter have been increasing by 0.4%/year, and this trend is expected to continue for a number of years, but it will likely become overly costly to go beyond 24–25%. This efficiency increase has contributed significantly to the steep learning rate, which is the average reduction of Si PV module selling price for every doubling of cumulative shipment, of 39.8%(11) that has been experienced since 2006. Although the manufacturing cost reduction also plays a major role, we expect that when the practical efficiency limits are being approached, the silicon PV industry will not be able anymore to maintain such a learning rate. Aside from module price, the further PV system costs (like installation) to a large extent depend on area and are reduced per unit of power output simply by higher module efficiency. It is because of the possibility that it can help overcome both these performance and cost limitations that metal halide perovskite-on-silicon tandem devices have been under development since 2015(12) and today lead to power conversion efficiencies of over 29%.(13,14)
000878349 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000878349 588__ $$aDataset connected to CrossRef
000878349 7001_ $$0P:(DE-HGF)0$$aLuxembourg, S. L.$$b1
000878349 7001_ $$0P:(DE-HGF)0$$aGeerligs, L. J.$$b2
000878349 7001_ $$0P:(DE-HGF)0$$aRosca, V.$$b3
000878349 7001_ $$0P:(DE-HGF)0$$aBurgers, A. R.$$b4
000878349 7001_ $$0P:(DE-HGF)0$$aWu, Y.$$b5
000878349 7001_ $$0P:(DE-HGF)0$$aOkel, L.$$b6
000878349 7001_ $$0P:(DE-HGF)0$$aKloos, M.$$b7
000878349 7001_ $$0P:(DE-HGF)0$$aDanzl, F. J. K.$$b8
000878349 7001_ $$0P:(DE-HGF)0$$aNajafi, M.$$b9
000878349 7001_ $$0P:(DE-HGF)0$$aZhang, D.$$b10
000878349 7001_ $$0P:(DE-HGF)0$$aDogan, I.$$b11
000878349 7001_ $$0P:(DE-HGF)0$$aZardetto, V.$$b12
000878349 7001_ $$0P:(DE-HGF)0$$aDi Giacomo, F.$$b13
000878349 7001_ $$0P:(DE-HGF)0$$aKroon, J.$$b14
000878349 7001_ $$0P:(DE-HGF)0$$aAernouts, T.$$b15
000878349 7001_ $$0P:(DE-Juel1)130252$$aHüpkes, J.$$b16
000878349 7001_ $$0P:(DE-HGF)0$$aBurgess, C. H.$$b17
000878349 7001_ $$0P:(DE-HGF)0$$aCreatore, M.$$b18
000878349 7001_ $$0P:(DE-HGF)0$$aAndriessen, R.$$b19
000878349 7001_ $$0P:(DE-HGF)0$$aVeenstra, S.$$b20
000878349 773__ $$0PERI:(DE-600)2864177-2$$a10.1021/acsenergylett.0c00682$$gVol. 5, no. 5, p. 1676 - 1680$$n5$$p1676 - 1680$$tACS energy letters$$v5$$x2380-8195$$y2020
000878349 8564_ $$uhttps://juser.fz-juelich.de/record/878349/files/20200121%20ACS%20Energy%20Letter%20-%20Viewpoints%20-%20Bifacial%20Tandem%20-%20Supporting%20Information%20for%20Publication%20-%20v6%20final.pdf$$yPublished on 2020-04-29. Available in OpenAccess from 2021-04-29.
000878349 8564_ $$uhttps://juser.fz-juelich.de/record/878349/files/20200121-ACS-Energy-Letter___Viewpoints___Bifacial-Tandem___v6-Edited.pdf$$yPublished on 2020-04-29. Available in OpenAccess from 2021-04-29.
000878349 8564_ $$uhttps://juser.fz-juelich.de/record/878349/files/acsenergylett.0c00682.pdf$$yRestricted
000878349 8564_ $$uhttps://juser.fz-juelich.de/record/878349/files/acsenergylett.0c00682.pdf?subformat=pdfa$$xpdfa$$yRestricted
000878349 909CO $$ooai:juser.fz-juelich.de:878349$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878349 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000878349 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b13$$kExtern
000878349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130252$$aForschungszentrum Jülich$$b16$$kFZJ
000878349 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000878349 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000878349 9141_ $$y2020
000878349 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000878349 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000878349 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-06
000878349 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878349 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-06
000878349 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000878349 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000878349 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000878349 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000878349 920__ $$lyes
000878349 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000878349 9801_ $$aFullTexts
000878349 980__ $$ajournal
000878349 980__ $$aVDB
000878349 980__ $$aUNRESTRICTED
000878349 980__ $$aI:(DE-Juel1)IEK-5-20101013
000878349 981__ $$aI:(DE-Juel1)IMD-3-20101013