001     878351
005     20220930130247.0
024 7 _ |a 10.1109/TMI.2020.3013982
|2 doi
024 7 _ |a 0278-0062
|2 ISSN
024 7 _ |a 1558-0062
|2 ISSN
024 7 _ |a 1558-254X
|2 ISSN
024 7 _ |a 2128/26335
|2 Handle
024 7 _ |a altmetric:88089812
|2 altmetric
024 7 _ |a pmid:32763849
|2 pmid
024 7 _ |a WOS:000595547500041
|2 WOS
037 _ _ |a FZJ-2020-02798
082 _ _ |a 620
100 1 _ |a Eberhardt, Boris
|0 P:(DE-Juel1)166296
|b 0
|u fzj
245 _ _ |a Application of Evolution Strategies to the Design of SAR Efficient Parallel Transmit Multi-Spoke Pulses for Ultra-High Field MRI
260 _ _ |a New York, NY
|c 2020
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606899657_18528
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present an evolution-strategy based approach to solve the magnitude least squares (MLS) design problem of low flip-angle slice-selective parallel transmit RF pulses for ultra-high field MRI using SAR and peak-RF-constraints. A combined transmit k-space trajectory and RF pulse weight optimization is proposed in two algorithmic steps. The first step is a coarse grid search to find an initial solution that fulfills all constraints for the subsequent multistage optimization. This avoids convergence to the next nearest local minimum. The second step attempts to refine the results using multiple evolution strategies. We compare the performance of our approach with the non-convex optimization methods described in the literature. The proposed algorithm converges for phantom and in vivo data and only requires an initial estimate of the range of suitable regularization parameters. It demonstrates improved excitation homogeneity compared to published spoke-design methods and allows optimization for homogeneity with a subsequent reduction in the SAR burden. Moreover, excitation homogeneity and the SAR burden can be balanced against each other, enabling a further reduction in SAR at the cost of minor relaxations in excitation homogeneity. This feature makes the algorithm a good candidate for SAR limited sequences in ultra-high field imaging. The algorithm is validated using phantom and in vivo measurements obtained with a 16-channel transmit array at 9.4T.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Poser, Benedikt A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Shah, N. Jon
|0 P:(DE-Juel1)131794
|b 2
|u fzj
700 1 _ |a Felder, Jorg
|0 P:(DE-Juel1)131761
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1109/TMI.2020.3013982
|g p. 1 - 1
|0 PERI:(DE-600)2068206-2
|n 12
|p 4225 - 4236
|t IEEE transactions on medical imaging
|v 39
|y 2020
|x 1558-254X
856 4 _ |u https://juser.fz-juelich.de/record/878351/files/Invoice-1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878351/files/09162147.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/878351/files/Invoice-1.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878351/files/Postprint.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878351/files/Postprint.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878351
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131761
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T MED IMAGING : 2018
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE T MED IMAGING : 2018
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-11
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21