000878354 001__ 878354
000878354 005__ 20240610121223.0
000878354 0247_ $$2doi$$a10.1021/acs.chemmater.9b02824
000878354 0247_ $$2ISSN$$a0897-4756
000878354 0247_ $$2ISSN$$a1520-5002
000878354 0247_ $$2WOS$$aWOS:000505628000012
000878354 037__ $$aFZJ-2020-02801
000878354 082__ $$a540
000878354 1001_ $$00000-0002-2019-6026$$aLiao, Ting-Wei$$b0$$eCorresponding author
000878354 245__ $$aComposition-Tuned Pt-Skinned PtNi Bimetallic Clusters as Highly Efficient Methanol Dehydrogenation Catalysts
000878354 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2019
000878354 3367_ $$2DRIVER$$aarticle
000878354 3367_ $$2DataCite$$aOutput Types/Journal article
000878354 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597125141_30814
000878354 3367_ $$2BibTeX$$aARTICLE
000878354 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878354 3367_ $$00$$2EndNote$$aJournal Article
000878354 520__ $$aPlatinum is the most active anode and cathode catalyst in next-generation fuel cells using methanol as liquid source of hydrogen. Its catalytic activity can be significantly improved by alloying with 3d metals, although a precise tuning of its surface architecture is still required. Herein, we report the design of a highly active low-temperature (below 0 °C) methanol dehydrogenation anode catalyst with reduced CO poisoning based on ultralow amount of precisely defined PtxNi1–x (x = 0 to 1) bimetallic clusters (BCs) deposited on inert flat oxides by cluster beam deposition. These BCs feature clear composition-dependent atomic arrangements and electronic structures stemming from their nucleation mechanism, which are responsible for a volcano-type activity trend peaking at the Pt0.7Ni0.3 composition. Our calculations reveal that at this composition, a cluster skin of Pt atoms with d-band centers downshifted by subsurface Ni atoms weakens the CO interaction that in turn triggers a significant increase in the methanol dehydrogenation activity.
000878354 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878354 536__ $$0G:(EU-Grant)686053$$aCritCat - Towards Replacement of Critical Catalyst Materials by Improved Nanoparticle Control and Rational Design (686053)$$c686053$$fH2020-NMP-2015-two-stage$$x1
000878354 588__ $$aDataset connected to CrossRef
000878354 7001_ $$0P:(DE-HGF)0$$aYadav, Anupam$$b1
000878354 7001_ $$0P:(DE-HGF)0$$aFerrari, Piero$$b2
000878354 7001_ $$0P:(DE-HGF)0$$aNiu, Yubiao$$b3
000878354 7001_ $$0P:(DE-Juel1)145420$$aWei, Xian-Kui$$b4
000878354 7001_ $$0P:(DE-HGF)0$$aVernieres, Jerome$$b5
000878354 7001_ $$0P:(DE-HGF)0$$aHu, Kuo-Juei$$b6
000878354 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b7
000878354 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b8
000878354 7001_ $$00000-0001-8728-8083$$aPalmer, Richard E.$$b9
000878354 7001_ $$00000-0002-4419-7824$$aLaasonen, Kari$$b10
000878354 7001_ $$00000-0002-9172-0614$$aGrandjean, Didier$$b11
000878354 7001_ $$00000-0002-5945-1194$$aJanssens, Ewald$$b12
000878354 7001_ $$0P:(DE-HGF)0$$aLievens, Peter$$b13
000878354 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.9b02824$$gVol. 31, no. 24, p. 10040 - 10048$$n24$$p10040 - 10048$$tChemistry of materials$$v31$$x1520-5002$$y2019
000878354 8564_ $$uhttps://juser.fz-juelich.de/record/878354/files/acs.chemmater.9b02824.pdf$$yRestricted
000878354 8564_ $$uhttps://juser.fz-juelich.de/record/878354/files/acs.chemmater.9b02824.pdf?subformat=pdfa$$xpdfa$$yRestricted
000878354 909CO $$ooai:juser.fz-juelich.de:878354$$pec_fundedresources$$pVDB$$popenaire
000878354 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145420$$aForschungszentrum Jülich$$b4$$kFZJ
000878354 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b7$$kFZJ
000878354 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b8$$kFZJ
000878354 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878354 9141_ $$y2020
000878354 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-11$$wger
000878354 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2018$$d2020-01-11
000878354 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11
000878354 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11
000878354 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-11
000878354 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-11
000878354 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11
000878354 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-11
000878354 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11
000878354 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11
000878354 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11
000878354 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-11
000878354 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-11
000878354 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bCHEM MATER : 2018$$d2020-01-11
000878354 920__ $$lyes
000878354 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878354 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000878354 980__ $$ajournal
000878354 980__ $$aVDB
000878354 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878354 980__ $$aI:(DE-Juel1)PGI-5-20110106
000878354 980__ $$aUNRESTRICTED
000878354 981__ $$aI:(DE-Juel1)ER-C-1-20170209