001     878354
005     20240610121223.0
024 7 _ |a 10.1021/acs.chemmater.9b02824
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a WOS:000505628000012
|2 WOS
037 _ _ |a FZJ-2020-02801
082 _ _ |a 540
100 1 _ |a Liao, Ting-Wei
|0 0000-0002-2019-6026
|b 0
|e Corresponding author
245 _ _ |a Composition-Tuned Pt-Skinned PtNi Bimetallic Clusters as Highly Efficient Methanol Dehydrogenation Catalysts
260 _ _ |a Washington, DC
|c 2019
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1597125141_30814
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Platinum is the most active anode and cathode catalyst in next-generation fuel cells using methanol as liquid source of hydrogen. Its catalytic activity can be significantly improved by alloying with 3d metals, although a precise tuning of its surface architecture is still required. Herein, we report the design of a highly active low-temperature (below 0 °C) methanol dehydrogenation anode catalyst with reduced CO poisoning based on ultralow amount of precisely defined PtxNi1–x (x = 0 to 1) bimetallic clusters (BCs) deposited on inert flat oxides by cluster beam deposition. These BCs feature clear composition-dependent atomic arrangements and electronic structures stemming from their nucleation mechanism, which are responsible for a volcano-type activity trend peaking at the Pt0.7Ni0.3 composition. Our calculations reveal that at this composition, a cluster skin of Pt atoms with d-band centers downshifted by subsurface Ni atoms weakens the CO interaction that in turn triggers a significant increase in the methanol dehydrogenation activity.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
536 _ _ |a CritCat - Towards Replacement of Critical Catalyst Materials by Improved Nanoparticle Control and Rational Design (686053)
|0 G:(EU-Grant)686053
|c 686053
|f H2020-NMP-2015-two-stage
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yadav, Anupam
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ferrari, Piero
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Niu, Yubiao
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wei, Xian-Kui
|0 P:(DE-Juel1)145420
|b 4
700 1 _ |a Vernieres, Jerome
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hu, Kuo-Juei
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 7
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 8
700 1 _ |a Palmer, Richard E.
|0 0000-0001-8728-8083
|b 9
700 1 _ |a Laasonen, Kari
|0 0000-0002-4419-7824
|b 10
700 1 _ |a Grandjean, Didier
|0 0000-0002-9172-0614
|b 11
700 1 _ |a Janssens, Ewald
|0 0000-0002-5945-1194
|b 12
700 1 _ |a Lievens, Peter
|0 P:(DE-HGF)0
|b 13
773 _ _ |a 10.1021/acs.chemmater.9b02824
|g Vol. 31, no. 24, p. 10040 - 10048
|0 PERI:(DE-600)1500399-1
|n 24
|p 10040 - 10048
|t Chemistry of materials
|v 31
|y 2019
|x 1520-5002
856 4 _ |u https://juser.fz-juelich.de/record/878354/files/acs.chemmater.9b02824.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/878354/files/acs.chemmater.9b02824.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:878354
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145420
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-11
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2018
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-11
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b CHEM MATER : 2018
|d 2020-01-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21