000878355 001__ 878355
000878355 005__ 20240610121223.0
000878355 0247_ $$2doi$$a10.1016/j.apcatb.2018.12.059
000878355 0247_ $$2ISSN$$a0926-3373
000878355 0247_ $$2ISSN$$a1873-3883
000878355 0247_ $$2WOS$$aWOS:000467661700025
000878355 037__ $$aFZJ-2020-02802
000878355 082__ $$a540
000878355 1001_ $$0P:(DE-HGF)0$$aHou, Tingting$$b0
000878355 245__ $$aSelective reduction of CO2 to CO under visible light by controlling coordination structures of CeOx-S/ZnIn2S4 hybrid catalysts
000878355 260__ $$aAmsterdam$$bElsevier$$c2019
000878355 3367_ $$2DRIVER$$aarticle
000878355 3367_ $$2DataCite$$aOutput Types/Journal article
000878355 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597062689_10378
000878355 3367_ $$2BibTeX$$aARTICLE
000878355 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878355 3367_ $$00$$2EndNote$$aJournal Article
000878355 520__ $$aEngineering the electronic properties of heterogeneous catalysts is an important strategy to enhance their activity towards CO2 reduction. Herein, we prepared partially sulfurized cerium oxide (CeOx-S) nanoclusters with the size less than 2 nm on the surface of ZnIn2S4 layers. Surface electronic properties of CeOx-S nanoclusters are facilely modulated by cerium coordination to sulfur, inducing the emergence of abundant Ce3+ and oxygen vacancies. For the photoreduction of CO2, CeOx-S/ZnIn2S4 hybrid catalysts exhibited a CO productivity of 1.8 mmol g−1 with a rate of 0.18 mmol g−1 h−1, which was twice as higher as that of ZnIn2S4 catalyst using triethylamine as a sacrificial electron donor. Further mechanistic studies reveal that the photogenerated electrons are trapped by oxygen vacancies on CeOx-S/ZnIn2S4 catalysts and subsequently transfer to CO2, benefiting the activation of CO2. Moreover, the extremely high selectivity of CO is derived from the weak adsorption of CO on the surface of CeOx-S/ZnIn2S4 catalysts.
000878355 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878355 588__ $$aDataset connected to CrossRef
000878355 7001_ $$0P:(DE-HGF)0$$aLuo, Nengchao$$b1
000878355 7001_ $$00000-0001-7104-0059$$aCui, Yi-Tao$$b2
000878355 7001_ $$0P:(DE-HGF)0$$aLu, Jianmin$$b3
000878355 7001_ $$0P:(DE-HGF)0$$aLi, Lei$$b4
000878355 7001_ $$0P:(DE-Juel1)168372$$aMacArthur, Katherine E.$$b5
000878355 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b6
000878355 7001_ $$0P:(DE-HGF)0$$aChen, Ruotian$$b7
000878355 7001_ $$0P:(DE-HGF)0$$aFan, Fengtao$$b8
000878355 7001_ $$0P:(DE-HGF)0$$aTian, Wenming$$b9
000878355 7001_ $$0P:(DE-HGF)0$$aJin, Shengye$$b10
000878355 7001_ $$00000-0002-9167-8743$$aWang, Feng$$b11$$eCorresponding author
000878355 773__ $$0PERI:(DE-600)2017331-3$$a10.1016/j.apcatb.2018.12.059$$gVol. 245, p. 262 - 270$$p262 - 270$$tApplied catalysis / B Environmental$$v245$$x0926-3373$$y2019
000878355 909CO $$ooai:juser.fz-juelich.de:878355$$pVDB
000878355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168372$$aForschungszentrum Jülich$$b5$$kFZJ
000878355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b6$$kFZJ
000878355 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878355 9141_ $$y2020
000878355 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL CATAL B-ENVIRON : 2018$$d2020-02-27
000878355 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000878355 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000878355 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000878355 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-27
000878355 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-27
000878355 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000878355 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000878355 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000878355 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000878355 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000878355 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-27
000878355 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000878355 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bAPPL CATAL B-ENVIRON : 2018$$d2020-02-27
000878355 920__ $$lyes
000878355 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878355 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000878355 980__ $$ajournal
000878355 980__ $$aVDB
000878355 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878355 980__ $$aI:(DE-Juel1)PGI-5-20110106
000878355 980__ $$aUNRESTRICTED
000878355 981__ $$aI:(DE-Juel1)ER-C-1-20170209