001     878355
005     20240610121223.0
024 7 _ |a 10.1016/j.apcatb.2018.12.059
|2 doi
024 7 _ |a 0926-3373
|2 ISSN
024 7 _ |a 1873-3883
|2 ISSN
024 7 _ |a WOS:000467661700025
|2 WOS
037 _ _ |a FZJ-2020-02802
082 _ _ |a 540
100 1 _ |a Hou, Tingting
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Selective reduction of CO2 to CO under visible light by controlling coordination structures of CeOx-S/ZnIn2S4 hybrid catalysts
260 _ _ |a Amsterdam
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1597062689_10378
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Engineering the electronic properties of heterogeneous catalysts is an important strategy to enhance their activity towards CO2 reduction. Herein, we prepared partially sulfurized cerium oxide (CeOx-S) nanoclusters with the size less than 2 nm on the surface of ZnIn2S4 layers. Surface electronic properties of CeOx-S nanoclusters are facilely modulated by cerium coordination to sulfur, inducing the emergence of abundant Ce3+ and oxygen vacancies. For the photoreduction of CO2, CeOx-S/ZnIn2S4 hybrid catalysts exhibited a CO productivity of 1.8 mmol g−1 with a rate of 0.18 mmol g−1 h−1, which was twice as higher as that of ZnIn2S4 catalyst using triethylamine as a sacrificial electron donor. Further mechanistic studies reveal that the photogenerated electrons are trapped by oxygen vacancies on CeOx-S/ZnIn2S4 catalysts and subsequently transfer to CO2, benefiting the activation of CO2. Moreover, the extremely high selectivity of CO is derived from the weak adsorption of CO on the surface of CeOx-S/ZnIn2S4 catalysts.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Luo, Nengchao
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cui, Yi-Tao
|0 0000-0001-7104-0059
|b 2
700 1 _ |a Lu, Jianmin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Li, Lei
|0 P:(DE-HGF)0
|b 4
700 1 _ |a MacArthur, Katherine E.
|0 P:(DE-Juel1)168372
|b 5
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 6
700 1 _ |a Chen, Ruotian
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Fan, Fengtao
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Tian, Wenming
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Jin, Shengye
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Wang, Feng
|0 0000-0002-9167-8743
|b 11
|e Corresponding author
773 _ _ |a 10.1016/j.apcatb.2018.12.059
|g Vol. 245, p. 262 - 270
|0 PERI:(DE-600)2017331-3
|p 262 - 270
|t Applied catalysis / B Environmental
|v 245
|y 2019
|x 0926-3373
909 C O |o oai:juser.fz-juelich.de:878355
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)168372
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130695
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL CATAL B-ENVIRON : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b APPL CATAL B-ENVIRON : 2018
|d 2020-02-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21