000878356 001__ 878356
000878356 005__ 20240610121223.0
000878356 0247_ $$2doi$$a10.1063/1.5120093
000878356 0247_ $$2Handle$$a2128/25467
000878356 0247_ $$2WOS$$aWOS:000489245900001
000878356 037__ $$aFZJ-2020-02803
000878356 082__ $$a600
000878356 1001_ $$00000-0002-5151-6360$$aCollins, Sean M.$$b0
000878356 245__ $$aPhase diagrams of liquid-phase mixing in multi-component metal-organic framework glasses constructed by quantitative elemental nano-tomography143
000878356 260__ $$aMelville, NY$$bAIP Publ.$$c2019
000878356 3367_ $$2DRIVER$$aarticle
000878356 3367_ $$2DataCite$$aOutput Types/Journal article
000878356 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597062757_10375
000878356 3367_ $$2BibTeX$$aARTICLE
000878356 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878356 3367_ $$00$$2EndNote$$aJournal Article
000878356 500__ $$aHelmholtz Postdoctoral Fellowship
000878356 520__ $$aSeveral distinct mixing processes and resulting microstructures have recently been reported in multicomponent glasses prepared from multiple metal-organic frameworks. Here, two illustrative examples of multicomponent zeolitic imidazolate framework (ZIF) glasses, the (aTZIF-4-Co)0.5(agZIF-62)0.5 blend and the ag[(ZIF-67)0.2(ZIF-62)0.8] flux melted glass, are studied. These materials are characterized by quantitative X-ray energy dispersive spectroscopy in the scanning transmission electron microscope. By advancing a partial ionization cross section methodology using standards of arbitrary morphology, quantitative nanoscale elemental analysis throughout the glass volume is achieved. In turn, phase diagrams describing the mixing states are presented, offering mechanistic insight into the formation of the observed microstructures. Significant miscibility was observed in ag[(ZIF-67)0.2(ZIF-62)0.8]. These findings establish phase-segregation and interdiffusion as two processes in multicomponent glass formation, which explains the different outcomes observed in blending and flux meltin
000878356 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878356 588__ $$aDataset connected to CrossRef
000878356 7001_ $$0P:(DE-Juel1)168372$$aMacArthur, Katherine E.$$b1$$eCorresponding author
000878356 7001_ $$00000-0002-9178-9603$$aLongley, Louis$$b2
000878356 7001_ $$00000-0001-5411-2268$$aTovey, Robert$$b3
000878356 7001_ $$00000-0002-6203-1350$$aBenning, Martin$$b4
000878356 7001_ $$00000-0003-0099-6306$$aSchönlieb, Carola-Bibiane$$b5
000878356 7001_ $$00000-0003-3717-3119$$aBennett, Thomas D.$$b6
000878356 7001_ $$00000-0002-6817-458X$$aMidgley, Paul A.$$b7
000878356 773__ $$0PERI:(DE-600)2722985-3$$a10.1063/1.5120093$$gVol. 7, no. 9, p. 091111 -$$n9$$p091111 -$$tAPL materials$$v7$$x2166-532X$$y2019
000878356 8564_ $$uhttps://juser.fz-juelich.de/record/878356/files/1.5120093.pdf$$yOpenAccess
000878356 8564_ $$uhttps://juser.fz-juelich.de/record/878356/files/1.5120093.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878356 909CO $$ooai:juser.fz-juelich.de:878356$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878356 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168372$$aForschungszentrum Jülich$$b1$$kFZJ
000878356 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878356 9141_ $$y2020
000878356 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000878356 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000878356 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-16
000878356 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878356 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPL MATER : 2018$$d2020-01-16
000878356 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-16
000878356 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-16
000878356 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000878356 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-16
000878356 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000878356 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000878356 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878356 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-16
000878356 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-16
000878356 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000878356 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000878356 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000878356 920__ $$lyes
000878356 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878356 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000878356 9801_ $$aFullTexts
000878356 980__ $$ajournal
000878356 980__ $$aVDB
000878356 980__ $$aUNRESTRICTED
000878356 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878356 980__ $$aI:(DE-Juel1)PGI-5-20110106
000878356 981__ $$aI:(DE-Juel1)ER-C-1-20170209