001     878378
005     20240712100914.0
020 _ _ |a 978-3-95806-488-1
024 7 _ |2 Handle
|a 2128/25597
024 7 _ |2 ISSN
|a 1866-1793
037 _ _ |a FZJ-2020-02818
100 1 _ |0 P:(DE-Juel1)165935
|a Poshyvailo, Liubov
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Lagrangian Simulation of Stratospheric Water Vapour: Impact of Large-Scale Circulation and Small-Scale Transport Processes
|f - 2020-02-28
260 _ _ |a Jülich
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
|c 2020
300 _ _ |a 126 S.
336 7 _ |2 DataCite
|a Output Types/Dissertation
336 7 _ |0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|a Book
|m book
336 7 _ |2 ORCID
|a DISSERTATION
336 7 _ |2 BibTeX
|a PHDTHESIS
336 7 _ |0 2
|2 EndNote
|a Thesis
336 7 _ |0 PUB:(DE-HGF)11
|2 PUB:(DE-HGF)
|a Dissertation / PhD Thesis
|b phd
|m phd
|s 1599574937_680
336 7 _ |2 DRIVER
|a doctoralThesis
490 0 _ |a Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment
|v 503
502 _ _ |a Universität Wuppertal, Diss., 2020
|b Dr.
|c Universität Wuppertal
|d 2020
520 _ _ |a The atmospheric global circulation, also referred to as the Brewer-Dobson circulation, controls the composition of the upper troposphere and lower stratosphere (UTLS). The UTLS trace gas composition, in turn, crucially affects climate. In particular, UTLS water vapour (H$_{2}$O) plays a significant role in the global radiation budget. Therefore, a realistic representation of H$_{2}$O and Brewer-Dobson circulation, is critical for accurate model predictions of future climate and circulation changes. This thesis is structured in two main parts: focussing on the (i) effect of model uncertainties (due to tropical tropopause temperature, horizontal transport and small-scale mixing) on stratospheric H$_{2}$O, and on the (ii) uncertainties in estimating Brewer-Dobson circulation trends from the observed H$_{2}$O trends. The results presented here are based largely on stratospheric H$_{2}$O studies with the Chemical Lagrangian Model of the Stratosphere (CLaMS). Firstly, to investigate the robustness of simulated H${2}$O with respect to different meteorological datasets, we examine CLaMS driven by the ERA-Interim reanalysis from the European Centre of Medium-Range Weather Forecasts, and the Japanese 55-year Reanalysis (JRA-55). Secondly, to assess the effects of horizontal transport, we carry out CLaMS simulations, with transport barriers, along latitude circles: at the equator, at 15$^{\circ}$ N/S and at 35$^{\circ}$ N/S. To investigate the sensitivity of simulated H$_{2}$O regarding small-scale atmospheric mixing, we vary the strength of parametrized small-scale mixing in CLaMS. Finally, to assess the reliability of estimated long-term Brewer-Dobson circulation changes from stratospheric H$_{2}$O, we apply different methods of calculating mean age of air trends involving two approximations: instantaneous entry mixing ratio propagation, and a constant correlation between mean age of air and the fractional release factor of methane. The latter assumption essentially means assuming a constant correlation between the mean age of air and the mixing ratio of long-lived trace gases. The results of this thesis show significant differences in simulated stratospheric H$_{2}$O (about 0.5 ppmv) due to uncertainties in the tropical tropopause temperatures between the two reanalysis datasets, JRA-55 and ERA-Interim. The JRA-55 based simulation is significantly moister, when compared to ERA-Interim, due to a warmer tropical tropopause of approximately 2 K. Moreover, through introducing artificial transport barriers in CLaMS, we suppress certain horizontal transport pathways. These transport experiments demonstrate that the Northern Hemisphere subtropics have a strong moistening effect on global stratospheric H$_{2}$O. Interhemispheric exchange shows only a very weak effect on stratospheric H$_{2}$O. Small-scale mixing mainly increases troposphere-stratosphere exchange, causing an enhancement of stratospheric H$_{2}$O, particularly, along the subtropical jets in the summer hemisphere and in the Northern hemispheric monsoon regions. In particular, the Asian and American monsoon systems, during boreal summer, turn out as regions especially sensitive to changes in small-scale mixing. The estimated mean age of air trends from stratospheric H$_{2}$O changes, in general, are strongly determined by the assumed approximations. Depending on the investigated region of the stratosphere, and the considered period, the error of estimated mean age of air trends can be large. Interestingly, depending on the period, the effects from both approximations can also be opposite, and may even cancel out. The results of this thesis provide new insights into the leading processes that control stratospheric H$_{2}$O and its trends, and are therefore relevant for improving climate model predictions. Furthermore, the results of this work can be used for evaluating the uncertainties of estimated stratospheric circulation changes from global satellite measurements.
536 _ _ |0 G:(DE-HGF)POF3-244
|a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|c POF3-244
|f POF III
|x 0
856 4 _ |u https://juser.fz-juelich.de/record/878378/files/Energie_Umwelt_503.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:878378
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165935
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-244
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 1
980 1 _ |a FullTexts
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21