000878390 001__ 878390
000878390 005__ 20210628225835.0
000878390 0247_ $$2doi$$a10.3389/frwa.2020.00004
000878390 0247_ $$2Handle$$a2128/25515
000878390 0247_ $$2altmetric$$aaltmetric:77718778
000878390 0247_ $$2WOS$$aWOS:000659406000001
000878390 037__ $$aFZJ-2020-02826
000878390 041__ $$aEnglish
000878390 082__ $$a333.7
000878390 1001_ $$0P:(DE-HGF)0$$aPauwels, Valentijn R. N.$$b0$$eCorresponding author
000878390 245__ $$aEvaluation of State and Bias Estimates for Assimilation of SMOS Retrievals Into Conceptual Rainfall-Runoff Models
000878390 260__ $$aLausanne$$bFrontiers Media$$c2020
000878390 3367_ $$2DRIVER$$aarticle
000878390 3367_ $$2DataCite$$aOutput Types/Journal article
000878390 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597644984_7895
000878390 3367_ $$2BibTeX$$aARTICLE
000878390 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878390 3367_ $$00$$2EndNote$$aJournal Article
000878390 520__ $$aFor an accurate estimation of land surface state variables through remote sensing data assimilation, it is important to estimate the forecast and observation biases as well. This study focuses on the evaluation of a methodology to estimate land surface state variables, together with model forecast and observation biases. Two conceptual rainfall-runoff models (HBV and GRKAL) are used for this purpose. Soil moisture data, retrieved by the Soil Moisture Ocean Salinity (SMOS) mission, are assimilated into these models for 59 unregulated sub-basins of the Murray-Darling basin in Australia. When both models simulate similar soil moisture values, the methodology results in similar forecast and observation bias estimates for both models. The same behavior is obtained when the temporal evolution of the soil moisture simulations is different, but with a similar long-term mean climatology. However, when the long-term mean climatology of both models is different, but with a similar temporal evolution, the bias estimates from both models have a different climatology as well, but with a high temporal correlation. The overall conclusion from this paper is that observation bias estimation is of key importance when updating internal state variables in a conceptual rainfall-runoff system that is calibrated to produce realistic discharge output for possibly biased internal state variables, and that the relative partitioning of bias into forecast and observation bias remains a model-dependent challenge.
000878390 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000878390 588__ $$aDataset connected to CrossRef
000878390 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b1
000878390 7001_ $$0P:(DE-HGF)0$$aDe Lannoy, Gabriëlle J. M.$$b2
000878390 773__ $$0PERI:(DE-600)2986721-6$$a10.3389/frwa.2020.00004$$gVol. 2, p. 4$$p4$$tFrontiers in water$$v2$$x2624-9375$$y2020
000878390 8564_ $$uhttps://juser.fz-juelich.de/record/878390/files/Pauwelsetal2020.pdf$$yOpenAccess
000878390 8564_ $$uhttps://juser.fz-juelich.de/record/878390/files/Pauwelsetal2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878390 909CO $$ooai:juser.fz-juelich.de:878390$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire$$pdnbdelivery
000878390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b1$$kFZJ
000878390 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000878390 9141_ $$y2020
000878390 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878390 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878390 920__ $$lyes
000878390 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000878390 980__ $$ajournal
000878390 980__ $$aVDB
000878390 980__ $$aUNRESTRICTED
000878390 980__ $$aI:(DE-Juel1)IBG-3-20101118
000878390 9801_ $$aFullTexts