000878391 001__ 878391
000878391 005__ 20230310131341.0
000878391 0247_ $$2doi$$a10.1039/C9RA05117A
000878391 0247_ $$2Handle$$a2128/25497
000878391 0247_ $$2WOS$$aWOS:000483739800014
000878391 037__ $$aFZJ-2020-02827
000878391 082__ $$a540
000878391 1001_ $$0P:(DE-HGF)0$$aRostek, A.$$b0
000878391 245__ $$aX-ray powder diffraction to analyse bimetallic core–shell nanoparticles (gold and palladium; 7–8 nm)
000878391 260__ $$aLondon$$bRSC Publishing$$c2019
000878391 3367_ $$2DRIVER$$aarticle
000878391 3367_ $$2DataCite$$aOutput Types/Journal article
000878391 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597329262_18955
000878391 3367_ $$2BibTeX$$aARTICLE
000878391 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878391 3367_ $$00$$2EndNote$$aJournal Article
000878391 520__ $$aA comparative X-ray powder diffraction study on poly(N-vinyl pyrrolidone) (PVP)-stabilized palladium and gold nanoparticles and bimetallic Pd–Au nanoparticles (both types of core–shell nanostructures) was performed. The average diameter of Au and Pd nanoparticles was 5 to 6 nm. The two types of core–shell particles had a core diameter of 5 to 6 nm and an overall diameter of 7 to 8 nm, i.e. a shell thickness of 1 to 2 nm. X-ray powder diffraction on a laboratory instrument was able to distinguish between a physical mixture of gold and palladium nanoparticles and bimetallic core–shell nanoparticles. It was also possible to separate the core from the shell in both kinds of bimetallic core–shell nanoparticles due to the different domain size and because it was known which metal was in the core and which was in the shell. The spherical particles were synthesized by reduction with glucose in aqueous media. After purification by multiple centrifugation steps, the particles were characterized with respect to their structural, colloid-chemical, and spectroscopic properties, i.e. particle size, morphology, and internal elemental distribution. Dynamic light scattering (DLS), differential centrifugal sedimentation (DCS), atomic absorption spectroscopy (AAS), ultraviolet-visible spectroscopy (UV-vis), high-angle annular dark field imaging (HAADF), and energy-dispersed X-ray spectroscopy (EDX) were applied for particle characterization.
000878391 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878391 536__ $$0G:(GEPRIS)286659497$$aDFG project 286659497 - Bimetallische Nanopartikel der Platinmetalle (Ru, Rh, Pd, Os, Ir, Pt) und des Silbers: Synthese, Mikrostruktur und biologische Wirkung (286659497)$$c286659497$$x1
000878391 588__ $$aDataset connected to CrossRef
000878391 7001_ $$0P:(DE-HGF)0$$aLoza, K.$$b1
000878391 7001_ $$0P:(DE-Juel1)130695$$aHeggen, M.$$b2
000878391 7001_ $$00000-0002-1641-7068$$aEpple, M.$$b3$$eCorresponding author
000878391 773__ $$0PERI:(DE-600)2623224-8$$a10.1039/C9RA05117A$$gVol. 9, no. 46, p. 26628 - 26636$$n46$$p26628 - 26636$$tRSC Advances$$v9$$x2046-2069$$y2019
000878391 8564_ $$uhttps://juser.fz-juelich.de/record/878391/files/c9ra05117a-1.pdf$$yOpenAccess
000878391 8564_ $$uhttps://juser.fz-juelich.de/record/878391/files/c9ra05117a-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878391 909CO $$ooai:juser.fz-juelich.de:878391$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b2$$kFZJ
000878391 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878391 9141_ $$y2020
000878391 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000878391 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000878391 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRSC ADV : 2018$$d2020-01-16
000878391 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-16
000878391 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-16
000878391 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000878391 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000878391 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-16
000878391 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000878391 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000878391 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878391 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-16
000878391 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-16
000878391 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000878391 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000878391 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-16$$wger
000878391 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000878391 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000878391 920__ $$lyes
000878391 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878391 980__ $$ajournal
000878391 980__ $$aVDB
000878391 980__ $$aUNRESTRICTED
000878391 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878391 9801_ $$aFullTexts