000878393 001__ 878393
000878393 005__ 20230310131343.0
000878393 0247_ $$2doi$$a10.1088/1361-6528/ab4e48
000878393 0247_ $$2ISSN$$a0957-4484
000878393 0247_ $$2ISSN$$a1361-6528
000878393 0247_ $$2Handle$$a2128/25672
000878393 0247_ $$2pmid$$apmid:31618711
000878393 0247_ $$2WOS$$aWOS:000494489200001
000878393 037__ $$aFZJ-2020-02829
000878393 041__ $$aEnglish
000878393 082__ $$a530
000878393 1001_ $$00000-0001-5192-6055$$aBreisch, Marina$$b0
000878393 245__ $$aEnhanced dissolution of silver nanoparticles in a physical mixture with platinum nanoparticles based on the sacrificial anode effectE
000878393 260__ $$aBristol$$bIOP Publ.$$c2020
000878393 3367_ $$2DRIVER$$aarticle
000878393 3367_ $$2DataCite$$aOutput Types/Journal article
000878393 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600259383_31286
000878393 3367_ $$2BibTeX$$aARTICLE
000878393 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878393 3367_ $$00$$2EndNote$$aJournal Article
000878393 520__ $$aA strategy to reduce implant-related infections is the inhibition of the initial bacterial implant colonization by biomaterials containing silver (Ag). The antimicrobial efficacy of such biomaterials can be increased by surface enhancement (nanosilver) or by creating a sacrificial anode system for Ag. Such a system will lead to an electrochemically driven enhanced Ag ion release due to the presence of a more noble metal. Here we combined the enlarged surface of nanoparticles (NP) with a possible sacrificial anode effect for Ag induced by the presence of the electrochemically more noble platinum (Pt) in physical mixtures of Ag NP and Pt NP dispersions. These Ag NP/Pt NP mixtures were compared to the same amounts of pure Ag NP in terms of cell biological responses, i.e. the antimicrobial activity against Staphylococcus aureus and Escherichia coli as well as the viability of human mesenchymal stem cells (hMSC). In addition, Ag NP was analyzed by ultraviolet–visible (UV–vis) spectroscopy, cyclic voltammetry, and atomic absorption spectroscopy. It was found that the dissolution rate of Ag NP was enhanced in the presence of Pt NP within the physical mixture compared to a dispersion of pure Ag NP. Dissolution experiments revealed a fourfold increased Ag ion release from physical mixtures due to enhanced electrochemical activity, which resulted in a significantly increased toxicity towards both bacteria and hMSC. Thus, our results provide evidence for an underlying sacrificial anode mechanism induced by the presence of Pt NP within physical mixtures with Ag NP. Such physical mixtures have a high potential for various applications, for example as antimicrobial implant coatings in the biomedicine or as bactericidal systems for water and surface purification in the technical area.
000878393 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878393 536__ $$0G:(GEPRIS)286659497$$aDFG project 286659497 - Bimetallische Nanopartikel der Platinmetalle (Ru, Rh, Pd, Os, Ir, Pt) und des Silbers: Synthese, Mikrostruktur und biologische Wirkung (286659497)$$c286659497$$x1
000878393 588__ $$aDataset connected to CrossRef
000878393 7001_ $$0P:(DE-HGF)0$$aLoza, Kateryna$$b1
000878393 7001_ $$0P:(DE-HGF)0$$aPappert, Kevin$$b2
000878393 7001_ $$0P:(DE-HGF)0$$aRostek, Alexander$$b3
000878393 7001_ $$0P:(DE-HGF)0$$aRurainsky, Christian$$b4
000878393 7001_ $$0P:(DE-HGF)0$$aTschulik, Kristina$$b5
000878393 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b6$$eCorresponding author
000878393 7001_ $$0P:(DE-HGF)0$$aEpple, Matthias$$b7
000878393 7001_ $$0P:(DE-HGF)0$$aTiller, Jörg C$$b8
000878393 7001_ $$0P:(DE-HGF)0$$aSchildhauer, Thomas A$$b9
000878393 7001_ $$0P:(DE-HGF)0$$aKöller, Manfred$$b10
000878393 7001_ $$0P:(DE-HGF)0$$aSengstock, Christina$$b11
000878393 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/1361-6528/ab4e48$$gVol. 31, no. 5, p. 055703 -$$n5$$p055703 -$$tNanotechnology$$v31$$x1361-6528$$y2020
000878393 8564_ $$uhttps://juser.fz-juelich.de/record/878393/files/Manuscript-Breisch-et-al.-2019%20PhysM.pdf$$yPublished on 2019-11-01. Available in OpenAccess from 2020-11-01.
000878393 8564_ $$uhttps://juser.fz-juelich.de/record/878393/files/Manuscript-Breisch-et-al.-2019%20PhysM.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-11-01. Available in OpenAccess from 2020-11-01.
000878393 909CO $$ooai:juser.fz-juelich.de:878393$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878393 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b6$$kFZJ
000878393 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878393 9141_ $$y2020
000878393 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000878393 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000878393 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-12
000878393 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000878393 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878393 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878393 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2018$$d2020-01-12
000878393 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000878393 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000878393 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000878393 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-12
000878393 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000878393 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-12
000878393 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000878393 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-12$$wger
000878393 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000878393 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-12$$wger
000878393 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000878393 920__ $$lyes
000878393 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878393 980__ $$ajournal
000878393 980__ $$aVDB
000878393 980__ $$aUNRESTRICTED
000878393 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878393 9801_ $$aFullTexts