000878394 001__ 878394
000878394 005__ 20230310131401.0
000878394 0247_ $$2doi$$a10.1021/acs.cgd.9b00728
000878394 0247_ $$2ISSN$$a1528-7483
000878394 0247_ $$2ISSN$$a1528-7505
000878394 0247_ $$2Handle$$a2128/25741
000878394 0247_ $$2WOS$$aWOS:000506088200016
000878394 037__ $$aFZJ-2020-02830
000878394 082__ $$a540
000878394 1001_ $$0P:(DE-HGF)0$$aPrymak, Oleg$$b0
000878394 245__ $$aTemperature-Induced Stress Relaxation in Alloyed Silver–Gold Nanoparticles (7–8 nm) by in Situ X-ray Powder Diffraction
000878394 260__ $$aWashington, DC$$bACS Publ.$$c2020
000878394 3367_ $$2DRIVER$$aarticle
000878394 3367_ $$2DataCite$$aOutput Types/Journal article
000878394 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600958543_26814
000878394 3367_ $$2BibTeX$$aARTICLE
000878394 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878394 3367_ $$00$$2EndNote$$aJournal Article
000878394 520__ $$aAlloyed silver–gold nanoparticles (spherical, 8 nm) were wet-chemically prepared by reduction with sodium citrate/tannic acid and colloidally stabilized by poly(N-vinylpyrrolidone) (PVP), in steps of 10 atom %, including pure silver nanoparticles (35 nm) and pure gold nanoparticles (7 nm). The nanoparticles were subjected to in situ X-ray powder diffraction up to 850 °C to induce internal stress relaxation and recrystallization. The stress-induced negative deviation from Vegard’s rule that was present in the original alloyed nanoparticles vanished between 150 and 250 °C, indicating the internal healing of defects. Simultaneously, a discontinuous increase in the crystallite size and a drop in the microstrain were observed. After heating to 850 °C, the original gradient structure (silver-rich shell, gold-rich core) had changed to a homogeneous elemental distribution as shown by high-angle annular dark-field scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDX). Thus, there is a considerable mobility of the metal atoms inside the nanoparticles that starts as low as 150 °C.
000878394 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000878394 536__ $$0G:(GEPRIS)286659497$$aDFG project 286659497 - Bimetallische Nanopartikel der Platinmetalle (Ru, Rh, Pd, Os, Ir, Pt) und des Silbers: Synthese, Mikrostruktur und biologische Wirkung (286659497)$$c286659497$$x1
000878394 536__ $$0G:(GEPRIS)257727131$$aDFG project 257727131 - Nanoskalige Pt Legierungselektrokatalysatoren mit definierter Morphologie: Synthese, Electrochemische Analyse, und ex-situ/in-situ Transmissionselektronenmikroskopische (TEM) Studien (257727131)$$c257727131$$x2
000878394 588__ $$aDataset connected to CrossRef
000878394 7001_ $$0P:(DE-HGF)0$$aGrasmik, Viktoria$$b1
000878394 7001_ $$0P:(DE-HGF)0$$aLoza, Kateryna$$b2
000878394 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b3
000878394 7001_ $$00000-0002-1641-7068$$aEpple, Matthias$$b4$$eCorresponding author
000878394 773__ $$0PERI:(DE-600)2048329-6$$a10.1021/acs.cgd.9b00728$$gVol. 20, no. 1, p. 107 - 115$$n1$$p107 - 115$$tCrystal growth & design$$v20$$x1528-7505$$y2020
000878394 8564_ $$uhttps://juser.fz-juelich.de/record/878394/files/acs.cgd.9b00728.pdf
000878394 8564_ $$uhttps://juser.fz-juelich.de/record/878394/files/Prymak%20Cryst%20Growth%20Des%202020%20subm.pdf$$yPublished on 2019-11-21. Available in OpenAccess from 2020-11-21.
000878394 8564_ $$uhttps://juser.fz-juelich.de/record/878394/files/Prymak%20Cryst%20Growth%20Des%202020%20subm.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-11-21. Available in OpenAccess from 2020-11-21.
000878394 8564_ $$uhttps://juser.fz-juelich.de/record/878394/files/acs.cgd.9b00728.pdf?subformat=pdfa$$xpdfa
000878394 909CO $$ooai:juser.fz-juelich.de:878394$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878394 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b3$$kFZJ
000878394 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000878394 9141_ $$y2020
000878394 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000878394 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000878394 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17
000878394 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878394 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYST GROWTH DES : 2018$$d2020-01-17
000878394 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000878394 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-17
000878394 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000878394 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000878394 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17
000878394 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17
000878394 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-17
000878394 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000878394 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000878394 920__ $$lyes
000878394 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000878394 980__ $$ajournal
000878394 980__ $$aVDB
000878394 980__ $$aUNRESTRICTED
000878394 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000878394 9801_ $$aFullTexts