001     878395
005     20210130005611.0
024 7 _ |2 doi
|a 10.1021/acs.jpcc.0c02805
024 7 _ |2 ISSN
|a 1932-7447
024 7 _ |2 ISSN
|a 1932-7455
024 7 _ |2 Handle
|a 2128/25513
024 7 _ |a altmetric:81178646
|2 altmetric
024 7 _ |a WOS:000537428000051
|2 WOS
037 _ _ |a FZJ-2020-02831
082 _ _ |a 530
100 1 _ |0 0000-0002-0793-9796
|a Marino, Emanuele
|b 0
245 _ _ |a Favoring the Growth of High-Quality, Three-Dimensional Supercrystals of Nanocrystals
260 _ _ |a Washington, DC
|b Soc.
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1597643364_7693
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a A recently developed emulsion-templated assembly method promises the scalable, low-cost, and reproducible fabrication of hierarchical nanocrystal (NC) superstructures. These superstructures derive properties from the unique combination of choices of NC building blocks and superstructure morphology and therefore realize the concept of “artificial solids”. To control the final properties of these superstructures, it is essential to control the assembly conditions that yield distinct architectural morphologies. Here, we explore the phase-space of experimental parameters describing the emulsion-templated assembly including temperature, interfacial tension, and NC polydispersity and demonstrate which conditions lead to the growth of the most crystalline NC superstructures or supercrystals. By using a combination of electron microscopy and small-angle X-ray scattering, we show that slower assembly kinetics, softer interfaces, and lower NC polydispersity contribute to the formation of supercrystals with grain sizes up to 600 nm, while reversing these trends yields glassy solids. These results provide a clear path to the realization of higher-quality supercrystals, necessary to many applications.
536 _ _ |0 G:(DE-HGF)POF3-143
|a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Keller, Austin W.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a An, Di
|b 2
700 1 _ |0 P:(DE-HGF)0
|a van Dongen, Sjoerd
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Kodger, Thomas E.
|b 4
700 1 _ |0 P:(DE-Juel1)168372
|a MacArthur, Katherine E.
|b 5
700 1 _ |0 P:(DE-Juel1)130695
|a Heggen, Marc
|b 6
700 1 _ |0 0000-0001-6540-2009
|a Kagan, Cherie R.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Murray, Christopher B.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Schall, Peter
|b 9
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2256522-X
|a 10.1021/acs.jpcc.0c02805
|g Vol. 124, no. 20, p. 11256 - 11264
|n 20
|p 11256 - 11264
|t The journal of physical chemistry / C
|v 124
|x 1932-7455
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/878395/files/acs.jpcc.0c02805.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/878395/files/acs.jpcc.0c02805.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:878395
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)168372
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130695
|a Forschungszentrum Jülich
|b 6
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J PHYS CHEM C : 2018
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21