000878397 001__ 878397
000878397 005__ 20210208142356.0
000878397 0247_ $$2doi$$a10.1103/PhysRevResearch.2.033240
000878397 0247_ $$2Handle$$a2128/25491
000878397 0247_ $$2altmetric$$aaltmetric:88080381
000878397 0247_ $$2WOS$$aWOS:000604150000008
000878397 037__ $$aFZJ-2020-02833
000878397 082__ $$a530
000878397 1001_ $$0P:(DE-Juel1)168211$$aBrinker, Sascha$$b0$$eCorresponding author$$ufzj
000878397 245__ $$aProspecting chiral multisite interactions in prototypical magnetic systems
000878397 260__ $$aCollege Park, MD$$bAPS$$c2020
000878397 3367_ $$2DRIVER$$aarticle
000878397 3367_ $$2DataCite$$aOutput Types/Journal article
000878397 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600087563_28885
000878397 3367_ $$2BibTeX$$aARTICLE
000878397 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878397 3367_ $$00$$2EndNote$$aJournal Article
000878397 520__ $$aAtomistic spin models have found enormous success in addressing the properties of magnetic materials, grounded on the identification of the relevant underlying magnetic interactions. For instance, the huge development in the field of magnetic skyrmions and other noncollinear magnetic structures is largely due to our understanding of the chiral Dzyaloshinskii-Moriya interaction. Recently, various works have proposed new types of chiral interactions, with seemingly different forms, but the big picture is still missing. Here, we present a systematic construction of a generalized spin model containing isotropic and chiral multisite interactions. These are motivated by a microscopic model that incorporates local spin moments and the spin-orbit interaction, and their symmetry properties are established. We show that the chiral interactions arise solely from the spin-orbit interaction and that the multisite interactions do not have to follow Moriya's rules, unlike the Dzyaloshinskii-Moriya and chiral biquadratic interactions. The chiral multisite interactions do not vanish as a result of inversion symmetry and comply with a generalized Moriya rule: If all sites connected by the interaction lie in the same mirror plane, the chiral interaction vector must be perpendicular to this plane. We then illustrate our theoretical considerations with density functional theory calculations for prototypical magnetic systems. These are triangular trimers built out of Cr, Mn, Fe, and Co adatoms on the Re(0001), Pt(111), and Au(111) surfaces, for which C3v symmetry applies, and Cr and Fe square tetramers on Pt(001) with C4v symmetry. The multisite interactions are substantial in magnitude and cannot be neglected when comparing the energy of different magnetic structures. Finally, we discuss the recent literature in light of our findings and clarify several unclear or confusing points.
000878397 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000878397 536__ $$0G:(DE-Juel1)jias1c_20171101$$aFirst-principles investigation of long range effects in magnetic nanostructures (jias1c_20171101)$$cjias1c_20171101$$fFirst-principles investigation of long range effects in magnetic nanostructures$$x1
000878397 588__ $$aDataset connected to CrossRef
000878397 7001_ $$0P:(DE-Juel1)145395$$ados Santos Dias, Manuel$$b1
000878397 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b2
000878397 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.2.033240$$gVol. 2, no. 3, p. 033240$$n3$$p033240$$tPhysical review research$$v2$$x2643-1564$$y2020
000878397 8564_ $$uhttps://juser.fz-juelich.de/record/878397/files/PhysRevResearch.2.033240.pdf$$yOpenAccess
000878397 8564_ $$uhttps://juser.fz-juelich.de/record/878397/files/PhysRevResearch.2.033240.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878397 909CO $$ooai:juser.fz-juelich.de:878397$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168211$$aForschungszentrum Jülich$$b0$$kFZJ
000878397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145395$$aForschungszentrum Jülich$$b1$$kFZJ
000878397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b2$$kFZJ
000878397 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000878397 9141_ $$y2020
000878397 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878397 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878397 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000878397 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000878397 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000878397 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000878397 980__ $$ajournal
000878397 980__ $$aVDB
000878397 980__ $$aI:(DE-Juel1)IAS-1-20090406
000878397 980__ $$aI:(DE-Juel1)PGI-1-20110106
000878397 980__ $$aI:(DE-82)080009_20140620
000878397 980__ $$aI:(DE-82)080012_20140620
000878397 980__ $$aUNRESTRICTED
000878397 9801_ $$aFullTexts