Home > Publications database > Ligand Pose Predictions for Human G Protein-Coupled Receptors: Insights from the Amber-based Hybrid Molecular Mechanics/Coarse-Grained Approach > print |
001 | 878447 | ||
005 | 20240625095124.0 | ||
024 | 7 | _ | |a 10.1021/acs.jcim.0c00661 |2 doi |
024 | 7 | _ | |a 0095-2338 |2 ISSN |
024 | 7 | _ | |a 1520-5142 |2 ISSN |
024 | 7 | _ | |a (BIS |2 ISSN |
024 | 7 | _ | |a 44.2004) |2 ISSN |
024 | 7 | _ | |a 1549-9596 |2 ISSN |
024 | 7 | _ | |a 1549-960X |2 ISSN |
024 | 7 | _ | |a 2128/26979 |2 Handle |
024 | 7 | _ | |a altmetric:87224276 |2 altmetric |
024 | 7 | _ | |a 32786708 |2 pmid |
024 | 7 | _ | |a WOS:000586716900061 |2 WOS |
037 | _ | _ | |a FZJ-2020-02855 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Schneider, Jakob |0 P:(DE-Juel1)171534 |b 0 |e Corresponding author |
245 | _ | _ | |a Ligand Pose Predictions for Human G Protein-Coupled Receptors: Insights from the Amber-based Hybrid Molecular Mechanics/Coarse-Grained Approach |
260 | _ | _ | |a Washington, DC |c 2020 |b American Chemical Society64160 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1611417499_28209 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Human G protein-coupled receptors (hGPCRs) are the most frequent targets of Food and Drug Administration (FDA)-approved drugs. Structural bioinformatics, along with molecular simulation, can support structure-based drug design targeting hGPCRs. In this context, several years ago, we developed a hybrid molecular mechanics (MM)/coarse-grained (CG) approach to predict ligand poses in low-resolution hGPCR models. The approach was based on the GROMOS96 43A1 and PRODRG united-atom force fields for the MM part. Here, we present a new MM/CG implementation using, instead, the Amber 14SB and GAFF all-atom potentials for proteins and ligands, respectively. The new implementation outperforms the previous one, as shown by a variety of applications on models of hGPCR/ligand complexes at different resolutions, and it is also more user-friendly. Thus, it emerges as a useful tool to predict poses in low-resolution models and provides insights into ligand binding similarly to all-atom molecular dynamics, albeit at a lower computational cost. |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Korshunova, Ksenia |0 P:(DE-Juel1)171535 |b 1 |u fzj |
700 | 1 | _ | |a Si Chaib, Zeineb |0 P:(DE-Juel1)173772 |b 2 |u fzj |
700 | 1 | _ | |a Giorgetti, Alejandro |0 P:(DE-Juel1)165199 |b 3 |u fzj |
700 | 1 | _ | |a Alfonso-Prieto, Mercedes |0 P:(DE-Juel1)169976 |b 4 |u fzj |
700 | 1 | _ | |a Carloni, Paolo |0 P:(DE-Juel1)145614 |b 5 |u fzj |
773 | _ | _ | |a 10.1021/acs.jcim.0c00661 |g p. acs.jcim.0c00661 |0 PERI:(DE-600)1491237-5 |n 10 |p 5103–5116 |t Journal of chemical information and modeling |v 60 |y 2020 |x 1549-960X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878447/files/acs.jcim.0c00661.pdf |y Restricted |
856 | 4 | _ | |y Published on 2020-07-31. Available in OpenAccess from 2021-07-31. |u https://juser.fz-juelich.de/record/878447/files/Preprint.pdf |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/878447/files/Preprint_SI.pdf |
856 | 4 | _ | |y Published on 2020-07-31. Available in OpenAccess from 2021-07-31. |x pdfa |u https://juser.fz-juelich.de/record/878447/files/Preprint.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://juser.fz-juelich.de/record/878447/files/Preprint_SI.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:878447 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171534 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171535 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)173772 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)165199 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)169976 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)145614 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Theory, modelling and simulation |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-12 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-12 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-12 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM INF MODEL : 2018 |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-12 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-12 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-12 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-11-20170113 |k INM-11 |l Jara-Institut Quantum Information |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)INM-11-20170113 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|