001     878447
005     20240625095124.0
024 7 _ |a 10.1021/acs.jcim.0c00661
|2 doi
024 7 _ |a 0095-2338
|2 ISSN
024 7 _ |a 1520-5142
|2 ISSN
024 7 _ |a (BIS
|2 ISSN
024 7 _ |a 44.2004)
|2 ISSN
024 7 _ |a 1549-9596
|2 ISSN
024 7 _ |a 1549-960X
|2 ISSN
024 7 _ |a 2128/26979
|2 Handle
024 7 _ |a altmetric:87224276
|2 altmetric
024 7 _ |a 32786708
|2 pmid
024 7 _ |a WOS:000586716900061
|2 WOS
037 _ _ |a FZJ-2020-02855
082 _ _ |a 540
100 1 _ |a Schneider, Jakob
|0 P:(DE-Juel1)171534
|b 0
|e Corresponding author
245 _ _ |a Ligand Pose Predictions for Human G Protein-Coupled Receptors: Insights from the Amber-based Hybrid Molecular Mechanics/Coarse-Grained Approach
260 _ _ |a Washington, DC
|c 2020
|b American Chemical Society64160
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611417499_28209
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Human G protein-coupled receptors (hGPCRs) are the most frequent targets of Food and Drug Administration (FDA)-approved drugs. Structural bioinformatics, along with molecular simulation, can support structure-based drug design targeting hGPCRs. In this context, several years ago, we developed a hybrid molecular mechanics (MM)/coarse-grained (CG) approach to predict ligand poses in low-resolution hGPCR models. The approach was based on the GROMOS96 43A1 and PRODRG united-atom force fields for the MM part. Here, we present a new MM/CG implementation using, instead, the Amber 14SB and GAFF all-atom potentials for proteins and ligands, respectively. The new implementation outperforms the previous one, as shown by a variety of applications on models of hGPCR/ligand complexes at different resolutions, and it is also more user-friendly. Thus, it emerges as a useful tool to predict poses in low-resolution models and provides insights into ligand binding similarly to all-atom molecular dynamics, albeit at a lower computational cost.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Korshunova, Ksenia
|0 P:(DE-Juel1)171535
|b 1
|u fzj
700 1 _ |a Si Chaib, Zeineb
|0 P:(DE-Juel1)173772
|b 2
|u fzj
700 1 _ |a Giorgetti, Alejandro
|0 P:(DE-Juel1)165199
|b 3
|u fzj
700 1 _ |a Alfonso-Prieto, Mercedes
|0 P:(DE-Juel1)169976
|b 4
|u fzj
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 5
|u fzj
773 _ _ |a 10.1021/acs.jcim.0c00661
|g p. acs.jcim.0c00661
|0 PERI:(DE-600)1491237-5
|n 10
|p 5103–5116
|t Journal of chemical information and modeling
|v 60
|y 2020
|x 1549-960X
856 4 _ |u https://juser.fz-juelich.de/record/878447/files/acs.jcim.0c00661.pdf
|y Restricted
856 4 _ |y Published on 2020-07-31. Available in OpenAccess from 2021-07-31.
|u https://juser.fz-juelich.de/record/878447/files/Preprint.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/878447/files/Preprint_SI.pdf
856 4 _ |y Published on 2020-07-31. Available in OpenAccess from 2021-07-31.
|x pdfa
|u https://juser.fz-juelich.de/record/878447/files/Preprint.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/878447/files/Preprint_SI.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878447
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171534
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171535
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173772
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-12
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM INF MODEL : 2018
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-12
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21