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Abstract

Human G protein-coupled receptors (hGPCRs) are the most frequent targets of

FDA-approved drugs. Structural bioinformatics, along with molecular simulation, can

support structure-based drug design targeting hGPCRs. In this context, several years

ago, we developed a hybrid Molecular Mechanics (MM)/Coarse-Grained (CG) approach

to predict ligand poses in low resolution hGPCR models. The approach was based on

the GROMOS96 43A1 and PRODRG united-atom force fields for the MM part. Here,

we present a new MM/CG implementation using instead the Amber 14SB and GAFF

all-atom potentials for proteins and ligands, respectively. The new implementation

outperforms the previous one, as shown by a variety of applications on models of hG-

PCR/ligand complexes at different resolution, and it is also more user-friendly. Thus,

it emerges as a useful tool to predict poses in low resolution models and provides in-

sights into ligand binding similarly to all-atom molecular dynamics, albeit at a lower

computational cost.

Introduction

Human G protein-coupled receptors (hGPCRs) are the largest family of transmembrane

proteins (4 % in the human genome1), with ≈800 members. These receptors, which serve

as signal transmitters across the cell membrane, are very important from a pharmaceutical

perspective. About one third of FDA approved drugs target ≈100 hGPCRs2; many oth-

ers (including about 400 human odorant and 25 human bitter taste receptors), are highly

promising drug targets3–5.

While chemoinformatics approaches are highly useful to identify drug leads across the

entire superfamily6, rational drug development is limited by the lack of experimental struc-

tural information. For most hGPCRs (92 %)7, one has to resort to computational models.

Unfortunately, bioinformatics-based predictions have limitations due to the low sequence

identity shared across the superfamily8. The predictions can, however, be improved by
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using molecular simulation9–15. In this regard, our team has developed a hybrid Molecu-

lar Mechanics/Coarse-Grained (MM/CG) approach tailored to predict ligand poses in hG-

PCRs16–18. Here, the "MM" part consists of the ligand and the binding site, as well as

surrounding water molecules. So far, this region has been described using the GROMOS96

43A1 united atom force field19 for the protein, together with the PRODRG force field20 for

the ligand (hereafter, GROMOS-based MM/CG). The rest of the protein (CG region) has

been described by a Gō model21. This allows for preserving the overall flexibility of the

system22,23, while reducing its overall complexity. Moreover, it minimizes possible structural

issues introduced by non-optimal side chain orientations in low resolution homology models,

i.e. built based on templates sharing sequence identity below 35 %13,24–26. The membrane

has been represented implicitly, further reducing the size of the system. The GROMOS-

based MM/CG scheme has been applied to a variety of hGPCRs, from the β2-adrenergic

receptor (β2-AR) in complex with antagonists carazolol and isoprenaline16,27, to bitter taste

receptors (hTAS2R) bound to agonists27–29 and GPR3 with a synthetic agonist30. The

GROMOS-based MM/CG simulations for these complexes turned out to be consistent with

the available experimental data. Simulations of the β2-AR/carazolol complex reproduced

the crystallographic ligand pose, regardless of the resolution of the initial structure (either a

high resolution X-ray structure16 or a low resolution homology model27). In particular, the

predicted receptor–ligand interactions were consistent with those in the X-ray structure31

and in previous all-atom (AA) Amber(99SB)-based molecular dynamics (MD) simulations32,

though protein–ligand distance distributions were slightly different16. The initial structure of

the β2-AR/isoprenaline complex was generated using an X-ray structure of the same receptor

bound to carazolol. The subsequent GROMOS-based MM/CG simulation was in good agree-

ment with previous AA-MD simulations32. In contrast, for the hTAS2R- and GPR3-ligand

complexes27–30, only low resolution models could be built and the only experimental data

available for validation were mutagenesis experiments, which may pinpoint specific residues

involved in ligand binding13. The GROMOS-based MM/CG simulations identified most of
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the experimentally determined binding residues27–30, improving remarkably the predictions

of molecular docking13,29.

Here, we present a new implementation of the MM/CG approach. It uses the Amber

14SB33 and GAFF34 all-atom force fields for the MM part of the receptor (hereafter, Amber-

based MM/CG). Such implementation has two major advantages. First, a small molecule

force field (GAFF34) has been specifically designed for molecules of pharmaceutical relevance

and it is compatible with the Amber protein force field33. Second, the ligand parameteri-

zation with GAFF can be automatized using ACPYPE35, replacing the use of the external

PRODRG webserver20. Thus, the Amber-based MM/CG implementation facilitates the au-

tomatization of the ligand parameterization and thereby accelerates the simulation setup for

pharmaceutically relevant hGPCRs.

Here, we performed Amber-based MM/CG simulations for a variety of hGPCR/ligand

complexes, using starting structures at different resolution. These benchmark systems were

used, on one hand, to validate our new implementation, by comparing our results with X-ray

structural information and/or all-atom and GROMOS-based MM/CG simulations. On the

other, the results were compared with docking poses for models across different resolution

regimes9,36,37. Specifically, we focused on four hGPCR/ligand complexes, using structural

information of decreasing resolution, see Table 1).

(i) The human adenosine 2A receptor in complex with its antagonist caffeine (hA2AR/CFF).

Here, X-ray structural information38 and all-atom Amber(99SB-ILDN)-based MD simula-

tions39 are available for a posteriori validation. The starting structure for the Amber-based

MM/CG simulations carried out in this work was based on a snapshot of the latter.

(ii) The human β2-adrenergic receptor in complex with the agonist adrenaline (β2-

AR/ADR). In this case, the Amber-based MM/CG simulations were started from two dif-

ferent models at different resolution. The available X-ray structure40 was used to validate

retrospectively our results. The first model was constructed using the structure of the same

receptor co-crystallized with another agonist, the high-affinity ligand BI16710740, similar
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to the procedure followed previously for the β2-AR/carazolol complex16,27. ADR was then

docked into the binding cavity. The two β2-AR ligands share the phenol ring and the hy-

droxylamine tail (Figure S941). Thus, the predictive power of docking procedures in this case

is expected to be very high9,36,37. The second model was built using a template with 24 %

sequence identity, the M2 muscarinic acetylcholine receptor (M2R) in its active state con-

formation42. Here, docking predictions are challenging because of the low overall sequence

identity, but they can still be successful, depending on the level of conservation of the ligand

binding residues9,43. In this case, nine out of 41 ligand-contacting residues44 are conserved.

(iii) The dopamine D3 receptor in complex with the antagonist eticlopride (D3R/ETI).

Here, we built two homology models. The first one used the dopamine D4 receptor45 as

template. The two dopamine receptor subtypes share 41 % sequence identity, right above the

35 % to 40 % threshold suggested for successful docking to hGPCR homology models9,46. The

second model was based on the M2R in an inactive state47, a template with 31 % sequence

identity and thus right below the aforementioned 35 % to 40 % threshold. Therefore, the two

D3R models are expected to be medium- and low-resolution, respectively.

(iv) The human bitter taste receptor 16 in complex with phenyl-β-D-glucopyranoside

(hTAS2R16/PGP). Only low resolution models can be built in this case, because the sequence

identity of hTAS2Rs with any other hGPCR with available experimental structure is <

20 %13. Under these circumstances, the predictive power of docking is highly limited13. The

results were compared with previously reported mutagenesis data48 and GROMOS-based

MM/CG simulations29.

The Amber-based MM/CG simulations on systems (i) and (iv) improve the ligand pose

predictions relative to the GROMOS-based ones. The retrospective validation on systems

(ii) and (iii) further shows the potential of Amber-based MM/CG simulations to identify

protein–ligand interactions. Finally, the Amber-based MM/CG performs better than docking

alone to predict binding residues for low-resolution models. For high-resolution models,

where docking is usually highly successful9,36,37, our simulations provide new insights into
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the flexibility of receptor–ligand interactions and hydration of the binding cavity, at a lower

expense than all-atom MD. Hence, the new implementation, which is freely available, is

expected to assist the prediction of ligands and to shed light on flexibility and hydration of

the binding site across hGPCRs (as well as GPCRs from other species).

Table 1: Overview of the hGPCR/ligand complexes studied in this work.
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hA2AR/CFF (HR) GROMOS AA-MD snapshot 3RFM 3 3 7

Amber AA-MD snapshot 3RFM 3 3 7

β2-AR/ADR (HR) Amber Model (4LDE) + docking 4LDO 7 3 3

β2-AR/ADR (LR) Amber HM (4MQS, 24 %) + docking 4LDO 7 3 3

D3R/ETI (MR) Amber HM (5WIU, 41 %) + docking 3PBL 7 3 3

D3R/ETI (LR) Amber HM (3UON, 31 %) + docking 3PBL 7 3 3

hTAS2R16/PGP (LR) GROMOS HM (4LDE, 13 %) + docking 7 7 3 3

Amber GROMOS-based MM/CG frame 7 7 3 3

aHR, MR and LR denote high, medium and low resolution models, respectively.
bMM/CG simulations were either based on the Amber 14SB force field33 or GROMOS
43A1 force field49 for the protein MM part. hTAS2R16/PGP GROMOS simulations are
taken from reference 29.
cThe "AA-MD snapshot" was taken from an Amber99SB-ILDN-based AA-MD simula-
tion39. "Model" was based on the X-ray structure of the same β2-AR40; thus the sequence
identity is 100 %. "HM" refers to homology models (with template and sequence identity
indicated between parentheses), followed by ligand docking with HADDOCK50. For the
hTAS2R16/PGP complex, the GROMOS MM/CG trajectory was taken from reference
29; a snapshot of this simulation was used to start the Amber-based MM/CG simulations
reported in this work.
dThe results of the simulations were validated against available X-ray structures (PDB
code shown), mutagenesis data1,48,51–55 and/or AA-MD simulations39, as indicated. The
MM/CG-derived ligand poses are compared with those generated by docking (from ref-
erence 29 for hTAS2R16/PGP).
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Methods

The next subsections provide details on the protocol for each of the computational methods

used to predict ligand binding poses, i.e. HADDOCK-50,56 and Glide Induced Fit Docking57,

as well as GROMOS- and AMBER-based MM/CG simulations. The standard protocols for

each of these methods were used. Only in the cases of hA2AR and hTAS2R16/PGP these

protocols were adjusted to be able to compare our results with published ones (see references

39 and 29, respectively).

Starting structures

The starting structure of hA2AR in complex with caffeine (system (i)) was taken from an AA-

MD trajectory based on the Amber force field39 (Table 1), while that of hTAS2R16/PGP (iv)

was taken from a GROMOS-based MM/CG simulation of this receptor–ligand complex29.

Two initial structures at different resolution were generated for each of the β2-AR/ADR (ii)

and D3R/ETI (iii) complexes. The sequences of β2-AR and D3R were retrieved from the

corresponding UniProt entries, i.e. P07550 and P35462, respectively. The extracellular N-

termini (1-34 aa for β2-AR and 1-32 aa for D3R) were not included in the modeling because

of the lack of templates covering this region.

For β2-AR, a high-resolution model (HR) was built based on the X-ray structure of the

same receptor bound to a different ligand, i.e. the high-affinity agonist BI167107, and an

engineered nanobody (PDB code 4LDE40), by reverting the thermostabilizing mutations

and adding the missing intracellular loops. Thus, the model has effectively 100 % sequence

identity. A second model was generated by homology modeling using as template the M2

muscarinic acetylcholine receptor in an active state bound to the agonist iperoxo (PDB code

4MQS42). The sequence identity is only 24 %, resulting in a low-resolution model (LR)25,26.

For D3R, two inactive state models (as expected for D3R bound to the antagonist eti-

clopride) were generated using homology modeling (Table 1): (i) a medium resolution (MR)
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model using as template the D4 dopamine receptor in complex with the antagonist nemon-

apride (PDB code 5WIU45, sequence identity 41 %) and (ii) a LR model using as template

the M2 muscarinic acetylcholine receptor bound to the antagonist 3-quinuclidinyl-benzilate

(PDB code 3UON47, sequence identity 31 %). Target-template sequence alignments were

performed using the HHsearch58 implementation within the GOMoDo webserver59, except

for the D3R-D4R alignment. In that case, the template was not available in the GOMoDo

library59 and thus we resorted to SWISS-MODEL60, which also uses HHsearch58. Homol-

ogy models were then created using MODELLER61,62, either the version implemented in

GOMoDo59 or its standalone version (9.11). For the HR and MR models, only two models

were produced for each template (default in GOMoDo). We selected the best one in terms

of normalized DOPE63 and GA341 quality values64,65. For the LR models, one hundred

models were generated. The best one was chosen based on the same aforementioned quality

criteria. No loop refinement was attempted. These models were then funneled through an

information-driven molecular docking protocol using the Guru interface of the HADDOCK2.2

webserver56. This uses MolProbity66 and PRODRG67 for the setup of the protein and lig-

and, respectively. In addition, we predicted the putative binding cavity using Fpocket68.

Fpocket-predicted residues whose side chains were pointing inside the receptor were used as

HADDOCK active residues, whereas passive residues were automatically defined as surface

neighbor residues within a 6.5 Å radius from the active residues50. We followed the small

ligand docking protocol described in references 69 and 70. It consists of three steps. First,

a rigid body docking generates 1000 initial ligand poses. Next, the best 200 poses from the

previous step are refined, based on a semi-flexible simulated annealing (SA) simulation in

the torsion angle space. This SA procedure consists of two cooling stages: (i) from 500 K to

50 K in 1000 MD steps and (ii) from 300 K to 50 K in 1000 MD steps. In these two stages,

the ligand and the residues within 5 Å from it are allowed to move, side chains only in (i) and

both side chains and backbone in (ii). Finally, three short MD simulations in explicit water

refine and improve the scoring of these 200 poses: (i) heating to 100 K, 200 K and 300 K
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(100 steps); (ii) 300 K simulation (1250 steps); (iii) cooling to 300 K, 200 K and 100 K (500

steps). Both ligand and protein are fully flexible, though positional restraints on the back-

bone heavy atoms are used to maintain the overall protein conformation. The protocol uses

the recommended HADDOCK score settings for small molecules69,70. The obtained docking

poses were then clustered based on their RMSD with a cutoff of 2.0 Å. For each cluster,

the four top poses were rescored using the PRODIGY-LIG webserver69,71. The predicted

binding energies were used to calculate the average value for each cluster. The best cluster

was selected as that with the lowest average predicted binding energy.

Simulation Details

The setup of the four different systems in Table 1 was performed with in-house scripts.

Four and three replicas of hA2AR/CFF and hTAS2R16/PGP, respectively, were started

using different initial velocities. The four top poses of the best cluster of the β2-AR/ADR

and D3R/ETI complexes were used as the initial structures to start four different MM/CG

replica simulations, each. Histidine protonation states were determined automatically using

pdb2gmx72,73, except for hA2AR/CFF and hTAS2R16/PGP. In those cases, they were set

manually in order to replicate those used in the previous Amber-based AA39 and GROMOS-

based MM/CG29 simulations, respectively.

Our MM/CG model consists of three regions with different levels of resolution16,17,22,23:

molecular mechanics resolution in the region around the ligand binding site (described with

either the GROMOS or Amber force field), coarse-grained resolution far from the binding site

(described by a Gō-like potential21) and a hybrid interface to connect them (see Figure 1).

The definition of the MM and I regions is based on a cutoff value, calculated as the z

coordinate centered between the two membrane planes φ1 and φ2 (Figure 1). All protein

residues located above this cutoff (i.e. towards the extracellular part of the receptor) are

treated at the MM level (in green color in Figure 1). The residues located up to 6 Å below

the cutoff (i.e. one helical turn) form the I region (in red color in Figure 1), which is also
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treated atomistically. The rest of the protein is treated at the CG level (in yellow color

in Figure 1). The MM and I residues for the systems considered in this work are listed in

Table S2.

The MM region was described in two ways (see Table 2):

(i) with the GROMOS 43A1 protein force field49 together with the SPC/E water model74.

For the CFF ligand, automatically generated PRODRG20 parameters and charges were used.

For PGP, preliminary simulations (see reference 29) showed that the automatically gener-

ated PRODRG parameterization was not able to reproduce the topology of the ligand. In

particular, spurious intramolecular glucose hydrogen bonds between the 3’ and 5’ hydroxyl

groups (see Figure S14), as well as artefactual flipping of the glucose hydroxyl groups between

equatorial and axial conformations were observed. Hence, a manual procedure was used to

parameterize the ligand29. In particular, the parameters were built by combining GROMOS

56a6_CARBO parameters75 for the β-D-glucopyranose unit and PRODRG20 generated pa-

rameters for the aglycon (see Figure S14). RESP charges76 (generated using Gaussian77 and

Antechamber78) were used, following reference 79.

(ii) with the Amber 14SB force field33 (taken from the GROMACS website19), together

with the TIP3P water model80. Ligand parameters for CFF, PGP, ADR, and ETI were

automatically generated with ACPYPE35 using the general Amber force field (GAFF)34

and AM1-BCC81 charges, except for PGP, for which ligand RESP charges were taken from

reference 29.

The MM/CG setup includes the introduction of five potential walls (φ1 to φ5, Figure 1) in

order to mimic implicitly the membrane and enclose the system (see Supporting Information

section MM/CG Model for further details). The spatial orientation of each hGPCR in

the membrane, and the position of the membrane planes φ1,2 (mimicking the lipid polar

head groups) were automatically determined by the PPM server82. The distance between

the two membrane planes was manually adjusted so that the membrane thickness is closer

to the values expected for a real membrane (35.0 Å for hA2AR/CFF, β2-AR/ADR, and
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D3R/ETI; 31.2 Å for hTAS2R16/PGP for consistency with reference 29). The potential

wall φ5 was built to mimic the lipid tails surrounding the protein. The system was solvated

with a box of water molecules and the water molecules under the upper plane and outside

of the upper hemisphere were subsequently deleted to obtain a hemispherical water droplet

solvating the extracellular part of the receptor (Figure 1). This has been shown to be

sufficient to ensure the proper hydration of the ligand binding site16. Radii of the upper

and lower hemispheric walls for hA2AR/CFF were set to 38.0 Å and 57.5 Å, respectively.

The values used for the other complexes are: 50.0 Å (upper) and 50.0 Å (lower) for both

β2-AR/ADR and D3R/ETI, and 53.0 Å (upper) and 35.0 Å (lower) for hTAS2R16/PGP,

following reference 29. Plain cutoff schemes were used for both the electrostatic Coulomb

and the van der Waals interactions, with radii 14 Å and 16 Å, respectively. No periodic

boundary conditions were used and the simulations were carried out at constant temperature

of 300 K. Further details on the Amber- and GROMOS-based MM/CG simulations can be

found in Table 2. Specifications for the all-atom simulation of hA2AR/CFF39 are also shown

for comparison.

An in-house MM/CG extension of GROMACS 4.5.172,73 was used to run the MM/CG

simulations (either GROMOS- or Amber-based). The systems were first minimized and

equilibrated. The equilibration procedure was system dependent. The initial structure of

hA2AR/CFF is a snapshot from an already equilibrated AA-MD simulation. Thus, only a

short equilibration (5 ns with positional restraints of 1000 kJmol−1 nm−2 on the Cα atoms)

was performed. β2-AR/ADR and D3R/ETI were equilibrated for a longer time (20 ns) with

positional restraints of 1000 kJmol−1 nm−2 on the Cα atoms. hTAS2R16/PGP, based on

a homology model with low sequence identity, underwent a simulated annealing procedure

(from 0 K to 300 K in 6 ns, using 30 steps of 120 ps each, plus 2.4 ns at 300 K) followed by

four steps (2.5 ns each) with position restraints on the Cα atoms decreasing from 1000 to

125 kJmol−1 nm−2.

Simulations were then continued removing all restraints and without any type of bi-

11





Table 2: Details of the Amber- and GROMOS-based MM/CG simulations, along with the
all-atom simulation of the hA2AR/CFF system39.

Simulation all-atom
Amber

MM/CG
GROMOS
MM/CG

simulation time 800 ns 500–800 ns 800 ns
time step 2 fs 2 fs 2 fs
PBCa 3 7 7

total atoms ≈150k ≈10k–18k ≈8k–18k
force field Amber Amber GROMOS96

99SB-ILDN 14SB 43A1
ligand model GAFF GAFF PRODRGb

ligand charges RESP AM1-BCCc PRODRGc

water model TIP3P TIP3P SPC/E
electrostatic cutoff PMEd 1.4 nm 1.4 nm
membrane explicit implicit (potential walls)
ions 3 7 7

thermostat Nosé-Hoover stochastic dynamics
barostat Andersen- 7 7

Parrinello-Rahman
temperature 310 K 300 K 300 K

aPeriodic Boundary Conditions.
bFollowing reference 29, the PGP parameters are a combination of PRODRG parameters
for the phenyl aglycon and GROMOS 56a6_CARBO parameters for the glucose ring.
cRESP charges were used instead for PGP for consistency with reference 29.
dParticle Mesh Ewald.

Docking

We performed additional docking calculations for β2-AR/ADR and D3R/ETI. Besides the

HADDOCK50,56 docking to generate starting structures, Induced Fit Docking (IFD)57 with

Extended Sampling (Schrödinger-Maestro v2017-383) was used. The β2-AR HR and LR

models, as well as the D3R MR and LR models underwent protein preparation with the

Schrödinger suite83. This automatically assigned bond orders for amino acid residues and

protonation states of Asp, Glu, Arg, Lys, and His at pH 7.0, using the propKa code84. Hy-

drogen atoms of the resulting structures underwent geometry optimization using the OPLS3

force field85. Ligand preparation was performed with LigPrep86 using the OPLS3 force
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field85. Ligand protonation states were generated with Epik87 using pH 7 ± 2. The most

likely state at physiological conditions was chosen for each of the ligands based on the pKa

values of the titrable groups (i.e. protonated amino group for both adrenaline and eticlo-

pride). The enantiomeric states of all ligands were chosen to have the chirality of the ligands

used experimentally40,88, i.e. (-)-adrenaline and S -(-)-eticlopride. The docking site was en-

closed in an inner box of 10 × 10 × 10Å3. The size of the outer box was set automatically

to accommodate the docked ligands. The boxes were centered at the original position of the

ligand in the crystallographic structures. The first step of the IFD57 with extended sampling

protocol is Glide docking89 to produce initial ligand poses with two different methods, either

using a softened potential or with removed side chains. Up to 80 representative poses are

returned based on the GlideScore SP5.089 and a penalty for non-planar amide torsions. The

representative poses are then used for Prime90 side-chain prediction of residues within 5 Å

of the ligand, followed by minimization of the residues and the ligand. Next, the ligand

was redocked using Glide89 with default Glide SP settings. The poses are scored with the

IFD extended sampling protocol scoring function. No H-bond or core constraints were used

in the docking protocol. 68, 66, 43 and 46 poses were generated for the β2-AR/ADR HR,

β2-AR/ADR LR, D3R/ETI MR and D3R/ETI LR complexes, respectively.

Simulation Analysis

Ligand RMSD Analysis and Clustering

The root-mean-square deviation (RMSD) of the ligand non-hydrogen atoms was calculated

using the RMSD Trajectory Tool in VMD91 after performing least-squares-fitting of the

protein Cα atoms to a reference structure. For CFF, the RMSD was determined along the

entire trajectories using the last frame of the all-atom trajectory as reference. For ADR and

ETI, the RMSD was calculated for the entire trajectories and representative poses obtained

through clustering of the MM/CG simulations, as well as for the docking poses. The X-

ray structures40,88 were used as reference. For PGP, the ligand RMSD was calculated for
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the entire trajectories and the last frame of each trajectory was the reference. The ligand

RMSD analysis shows that no unbinding events occur for any of the simulations performed

in this study (see Supporting Information, section Ligand RMSD analysis and Figures S2,

S8 and S13 and Table S13).

A cluster analysis based on the RMSD of the ligand non-hydrogen atoms was performed

using the GROMACS 5.1 cluster module with the gromos92 method. In this implementation,

the specified RMSD cutoff is the minimum distance of all individual structures to the cluster

“central” structure. This structure can be used as the representative structure of the cluster

for further analysis. The algorithm does not impose a quality threshold for the structures

contained in each of the retrieved clusters. This might result in unrelated structures being

classified as belonging to the same cluster93. To address this issue, we visualized the clusters

and checked (i) for sufficient similarity across the structures within a cluster and (ii) for

sufficient distance among the different clusters. RMSD cutoffs of 1.50 Å, 1.25 Å, 2.00 Å

and 1.50 Å were used for CFF, PGP, ADR, and ETI, respectively. The RMSD cutoff for

each system was chosen based on the distribution of ligand RMSD values across all replica

simulations of the systems under consideration.

For hA2AR/CFF, cluster analysis was performed for the last 450 ns to 800 ns of each

trajectory. In the AA-MD of this complex, a receptor conformational change occurred at

≈450 ns that made the binding cavity more compact. As a result, the ligand pose changed

with respect to the initial (X-ray-like) pose. Hence, the initial configuration for both the

GROMOS- and Amber-based MM/CG simulations is based on a snapshot of the AA-MD

taken after this receptor conformational change. The MM/CG trajectories were also analyzed

only for the last 350 ns in order to have an equivalent simulation length for comparison among

different simulation types. The most populated clusters, adding up to at least 90 % of the

whole simulation time, were selected for further analysis.
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Ligand–Receptor Interactions

Ligand–receptor interactions were determined by a combination of visual inspection of the

representative structure of each cluster and automatic detection using in-house scripts (based

on the HBonds tool in VMD91 and g_mindist in GROMACS73). Cutoff values used to

define the different types of interactions are: for hydrogen bonds, 3.5 Å donor–acceptor

distance and 35° donor–hydrogen–acceptor angle (tolerance for deviation from a perfectly

linear interaction); for salt bridges, 4 Å distance between charged groups; and for contacts

(either hydrophobic or π-π interactions), 5.0 Å between the closest carbon atoms. Analysis

of the ligand–receptor interactions using this protocol was performed for the representative

structures of the most populated clusters of the MM/CG simulations, as well as for the

docking poses and for the X-ray structures used for retrospective validation. Additional

analyses based on the interaction persistency along the whole simulations are given in the

Supporting Information (Tables S3 to S5, S7 to S12 and S14 to S16). As noted above,

for the hA2AR/CFF complex, trajectories were analyzed only for the last 350 ns. Protein

residues are indicated using both the receptor sequence number and the generic class A

GPCR number based on the Ballesteros-Weinstein94 scheme (as superscript).

Comparison with experimental mutagenesis data

The agreement between simulation results and experimental mutagenesis data was quanti-

fied using the statistical parameters precision and recall13, as well as the F1 score. Residues

for which site-directed mutagenesis data was available were classified as "experimentally

binding" (EB), when their mutation increases EC50 or Ki values, or "experimentally non-

binding" (ENB), when those values do not significantly change upon mutation. Mutagenesis

data was taken from references 51 and 48 for the hA2AR/CFF and hTAS2R16/PGP com-

plexes, respectively. For β2-AR/ADR and D3R/ETI, mutagenesis data was retrieved from

GPCRdb1, which in turn was compiled from references 52–54 for β2-AR/ADR and refer-

ence 55 for D3R/ETI. The same residues were classified as "computationally binding" (CB)
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or "computationally non-binding" (CNB) depending on the presence of the receptor–ligand

interactions (hydrophobic contacts and/or direct or water-mediated H-bonds) in at least one

of the representative structures of the most populated clusters.

Agreement between computational predictions and experiments results in either true

positives (TP, EB+CB) or true negatives (TN, ENB+CNB). Discrepancies between compu-

tational predictions and experiments can be classified as false negatives (FN, EB+CNB) or

false positives (FP, ENB+CB). The agreement was analyzed in terms of precision

PREC =
NTP

NTP +NFP

(1)

and recall

REC =
NTP

NTP +NFN

, (2)

where N is the number of residues of the type given in the subscript (e.g. NTP is the number

of residues identified as true positives), as well as their harmonic mean (F1 score)

F1 = 2 ·
PREC ·REC

PREC +REC
. (3)

The first two statistical parameters indicate the agreement of the simulations with experi-

ments, with values ranging from 0 (no agreement) to 1 (perfect agreement). F1 measures

the effectiveness of the computational predictions in retrieving accurately the experimental

data. An F1 score of 1 indicates perfect precision and recall (i.e. both low false positives

and low false negatives).

Calculation of these statistical parameters may be biased because of the criteria used for

the assignment of TP, FP, TN and FN. Hence, we used two alternative, yet complementary

definitions of these, based (i) on the representative structures of the combined clusters or (ii)

on the interaction persistency along the simulations. The use of the cluster representative

structures has the limitation that these structures correspond to frames along the trajectory,
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not to minimized structures, and thus do not capture the dynamical fluctuations of the

protein-ligand interactions. Instead, the use of persistency values does include the intrinsic

conformational fluctuations of the ligands, but, on the other hand, do not allow to pinpoint

individual ligand poses. The calculated statistical parameters turn out to differ by 0.00 to

0.25. This allows us to suggest that, at least for the complexes considered here, the degree

of bias related to our definitions is quite low95.

Further analyses

To compare the receptor flexibility in the different simulations, the protein RMSF has been

calculated. Details and results can be found in the Supporting Information (section Protein

RMSF analysis and Figures S1 and S7). The Ligand position and the Ligand flipping angle

have been further analysed for A2AR/CFF and compared to the results in the publication

of the all-atom simulation39 (see the corresponding sections and Figures S3 to S6 in the

Supporting Information.

Results

Amber-based MM/CG simulations were carried out on four hGPCR/ligand complexes at

different resolutions: hA2AR/CFF, β2-AR/ADR, D3R/ETI, and hTAS2R16/PGP (see Ta-

ble 1). The results were validated against Amber-based AA-MD, X-ray structural data,

site-directed mutagenesis experiments, GROMOS-based MM/CG simulations and docking

procedures.

A high resolution model: the hA2AR/CFF complex

Here we investigated whether the Amber-based MM/CG simulations are able to reproduce

the CFF binding poses observed in the X-ray structure38, along with an 800 ns long Amber-

based AA-MD simulation by Cao et al. 39. Comparison is also made with GROMOS-based
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MM/CG simulations (Table 1).

For both GROMOS- and Amber-based MM/CG, the flexibility of the MM part of the

protein (see Cα RMSF in Figure S1) is preserved relative to X-ray and all-atom MD simu-

lations, despite the presence of the CG region.

In the Amber-based AA-MD simulation the ligand explored multiple binding poses. Dur-

ing the first 450 ns, CFF explores mainly a binding pose similar to the X-ray structure

(see Figure S2). Afterwards, binding of a cholesterol molecule near transmembrane helix 2

changed the conformation of the receptor, making the binding cavity more compact39. As a

result, the CFF pose changed (see Figure 2a) and this new pose remained stable for the last

350 ns of the AA-MD (see Figure S2).

For the hybrid simulations, clustering analysis on the last 350 ns (Figure 2 and Table 3)

shows three representative binding poses for the Amber-based MM/CG (AM1-AM3) and

four for the Gromos-based MM/CG (GM1-GM4). The two most populated clusters of the

Amber-based MM/CG simulations (AM1 and AM2) are similar to those emerging from the

Amber-based AA simulations39 (AA1, see Figures 2b and 2c). The cluster AM3 (Figure 2d)

has the same orientation as that of the X-ray structure38, though displaced by about 2.5 Å

further inside the receptor. We conclude that both the AA and MM/CG simulations ex-

plored additional ligand poses, besides the X-ray one. We surmise this is caused, at least

in part, by two factors. On one hand, all the simulations presented here were carried out

at 300 K, while the X-ray structure was solved at 200 K96. At higher temperatures, the

ligand explores a larger number of conformations. In this regard, our results are in line with

the previous AA-MD simulations (not only Amber-based97 but also CHARMM-based98),

and, most importantly, they are consistent with NMR experiments97,99. On the other, the

receptor conformation present in the simulations39 is different from the one in the initial

X-ray structure38, further influencing the binding pose. Additional details are provided in

the Supporting Information (section Discussion on the caffeine binding poses).

The GROMOS-based MM/CG simulations sampled binding poses different from the
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Amber-based all-atom and MM/CG simulations, as well as the X-ray structure. However,

the most populated GROMOS-based MM/CG pose (GM1, see Figure 2e) features a similar

orientation as the AM2 (Figure 2c) and AA1 poses, indicating a partial overlap between the

conformational space sampled by the different simulations. Nonetheless, this pose is shifted

by about 2.5 Å further inside the binding cavity, resulting in different receptor–ligand inter-

actions (Table 3).

In addition, we validated the simulations results against mutagenesis data51. The Amber-

based MM/CG simulations turned out to be in perfect agreement (i.e. precision, recall and

F1 score are 1.00). Instead, the agreement is lower for the GROMOS-based MM/CG (see

Table 4).
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(a) AA1 - X-ray (b) AA1 - AM1 (c) AA1 - AM2 (d) AA1 - AM3

(e) AA1 - GM1 (f) AA1 - GM2 (g) AA1 - GM3 (h) AA1 - GM4

Figure 2: Representative binding poses of hA2AR/CFF. (a) Comparison of the most popu-
lated binding pose of the reference Amber-based AA simulation (AA1, gray) with the X-ray
structure (PDB code 3RFM38, black). (b)-(d) Binding poses of the Amber (AM, green) and
(e)-(h) GROMOS-based MM/CG (GM, red) simulations compared to AA1.
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Table 3: Interactions of the most populated clusters for the Amber all-atom (AA), Amber-
based MM/CG (AM) and GROMOS-based MM/CG (GM) simulations and the X-ray struc-
ture38 of the hA2AR/CFF system. The clusters are numbered consecutively according to
their population, indicated as percentage. Mutagenesis data is taken from reference 51.

Residue
Interaction

type X
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ay
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Val552.53 hydrophobic
Ala632.61 hydrophobic
Ile662.64 hydrophobic
Ser672.65 H-bond
Val843.32 hydrophobic
Leu853.33 hydrophobic
Thr883.36 hydrophobic
Gln893.37 H-bond
Phe168ECL2 π-stacking
Met1775.38 hydrophobic
Asn1815.42 H-bond
Phe1825.43 π-stacking
Val1865.47 hydrophobic
Trp2466.48 π-stacking
Leu2496.51 hydrophobic
His2506.52 H-bond

π-stacking
hydrophobic

Ile2526.54 hydrophobic
Asn2536.55 H-bond
Met2707.35 hydrophobic
Ile2747.39 hydrophobic
His2787.43 H-bond

direct interaction, water mediated interaction and no interaction
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Table 4: Precision (PREC), recall (REC) and F1 score of the Amber- and GROMOS-based
MM/CG CFF poses in hA2AR (see Table 3).

Amber
MM/CG

GROMOS
MM/CG

PREC 1.00 0.67
REC 1.00 0.50
F1 1.00 0.57

From high- to low-resolution models: the β2-AR/ADR and D3R/ETI

complexes

Here, we investigated the capability of the Amber-based MM/CG approach to predict ligand

binding poses starting with models of diverse resolution. We focused on two complexes (β2-

AR/ADR and D3R/ETI) and generated two models at different resolution for each of them

(see Table 1).

For both receptors, the Cα RMSF values calculated from the Amber-based MM/CG

simulations compare well with those from CHARMM-based AA-MD100 (Figure S7), as well

as with the crystallographic β-factors40,88 (see Supporting Information for details).

For β2-AR/ADR, the X-ray structure40 shows that the ligand forms a salt bridge with

Asp1133.32 (conserved across aminergic receptors44,101) and H-bonds with Asp1133.32, Ser2035.42,

Ser2075.46, Asn2936.55, and Asn3127.39 (the last is conserved across β-adrenergic receptors44).

The Amber-based MM/CG simulation of β2-AR/ADR (HR) reproduces all of the crys-

tallographic interactions40 (see Table 5). This contrasts with the HADDOCK or IFD-based

dockings started from the same receptor model. These docking approaches reproduced the

salt bridge with Asp1133.32, but they missed some of the H-bonds.

As expected, the predictive power turned out to be lower in the LR model (see Ta-

ble 5). The Amber-based MM/CG-derived simulations and IFD predicted interactions with

residues Asp1133.32, Asn2936.55 and Asn3127.39, but missed two H-bonds with Ser2035.42 and

Ser2075.46. The HADDOCK docking poses missed most interactions, in particular the H-
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bond with Asp1133.32.

In addition, the Amber-based MM/CG simulations predict a hydrogen bond with Ser2045.43,

either direct for the HR model or water-mediated for the LR model. The crystallographic

pose is compatible with the presence of a water-mediated hydrogen bond with Ser2045.43 40.

Mutagenesis data for the β2-AR/ADR complex1,52,54,102,103 (see last column in Table 5)

suggests that Ser2035.42, Ser2045.43, Asn2936.55, and Asn3127.39 are involved in binding (EB,

see Methods), while Cys1163.35 is not (ENB). Validation of the Amber-based MM/CG simu-

lations against this data shows that precision is maximal, while recall and F1 score are higher

compared to docking (Table 6).

In addition, we compared the Amber-based MM/CG results with CHARMM-based AA-

MD studies previously published in the literature. In the case of the β2-AR/ADR complex,

the ligand RMSD values (Table S13) were comparable to those previously reported for the

AA-MD104. Furthermore, the receptor–ligand interactions also agree with AA-MD simula-

tions105,106.

For D3R/ETI, the X-ray structure88 shows that the tertiary amine of the ligand five-

membered ring, positively charged at physiological pH (see Figure S10), forms a salt-bridge

with Asp1103.32. Furthermore, the aromatic ring of eticlopride interacts with a hydrophobic

pocket composed by residues Val1113.33, Ile183ECL2, Val1895.39, Phe3456.51, Phe3466.52.

The MR Amber-based MM/CG reproduced all of the crystallographic interactions, while

the LR appeared to miss the hydrogen bonds with His3496.55 and Tyr3657.35 (see Table 7).

However, it should be noted that these two hydrogen bonds are only present in one of the

two chains (A) of the X-ray structure (PDB code 3PBL). Instead, in the other chain (B),

His3496.55 does not interact with the ligand, whereas Tyr3657.35 interacts only indirectly

through Phe3456.51. Therefore, the simulation results are still compatible with the crystallo-

graphic interactions. The Amber-based MM/CG seemed to be more successful at predicting

receptor–ligand interactions than docking alone for the same receptor model, either MR or

LR (Table 7).
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This comparison with the X-ray structure was also complemented by validation against

mutagenesis data1,55. Based on the change in Ki upon mutation (see Methods), Tyr3657.35,

Ile183ECL2, Val1895.39, and Tyr3737.43 were classified as EB residues, and Ser182ECL2 as ENB

(see last column of Table 7). The precision was 1.00 for most computational approaches,

including MM/CG. However, in most cases the recall and F1 score were higher for MM/CG

than docking (Table 8).

For D3R/ETI, ligand RMSD values obtained in our Amber-based MM/CG simulations

(Table S13) are comparable to those of a CHARMM-based AA-MD simulation55. Amber-

based MM/CG simulations recovered the interactions with Asp1103.32 and His3496.55 (Ta-

ble 7), in line with a CHARMM-based AA-MD107.

To complement the comparison of the ligand poses for β2-AR/ADR and D3R/ETI, the

superimposition of the X-ray poses with the cluster representatives emerging from the Amber-

based simulations and the HADDOCK poses can be found in the Supporting Information

(Figures S11 and S12).
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Table 5: β2-AR/ADR interactions predicted using different receptor modelsa and computa-
tional approachesb. Retrospective validation is performed by comparison with experimental
datac.

Residue
Interaction

type X
-r

ay
H

R
M

M
/C

G
L
R

M
M

/C
G

H
R

H
A

D
D

O
C

K
L
R

H
A

D
D

O
C

K
H

R
IF

D
L
R

IF
D

M
ut

ag
en

es
is

Asp1133.32 Salt-bridge (N+)
Asp1133.32 H-bond (tail OH)
Ser2035.42 H-bond
Ser2045.43 H-bond
Ser2075.46 H-bond
Asn2936.55 H-bond
Asn3127.39 H-bond (N+)
Asn3127.39 H-bond (tail OH)
Trp1093.28 contact
Cys1163.35 contact
Val1173.36 contact
Phe193ECL2 contact
Ser2075.46 contact
Trp2866.48 contact
Phe2896.51 contact
Phe2906.52 contact
Tyr3087.35 contact
Tyr3167.43 contact

direct interaction, water mediated interaction and no interaction
ahigh (HR) and low (LR) resolution models, see Table 1.

bAmber-based MM/CG simulations and HADDOCK and IFD dockings.
cX-ray structure (PDB code 4LDO)40 and mutagenesis data1,52,54,102,103.

Table 6: Precision (PREC), recall (REC), and F1 score for the β2-AR/ADR complex
computational predictions (see Table 5).

HR
MM/CG

LR
MM/CG

HR
HADDOCK

LR
HADDOCK

HR
IFD

LR
IFD

PREC 1.00 1.00 1.00 1.00 1.00 1.00
REC 1.00 0.60 0.40 0.40 0.80 0.40
F1 1.00 0.75 0.57 0.57 0.89 0.57

26



Table 7: D3R/ETI interactions predicted using different receptor modelsa and computational
approachesb. Retrospective validation is performed by comparison with experimental datac.

Residue
Interaction

type X
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Asp1103.32 Salt-bridge
Ser182ECL2 H-bond
His3496.55 H-bond*
Tyr3657.35 H-bond**
Val862.61 contact
Phe1063.28 contact
Val1073.29 contact
Val1113.33 contact
Thr1153.37 contact
Ile183ECL2 contact
Val1895.39 contact
Ser1925.42 contact
Ser1935.43 contact
Ser1965.46 contact
Trp3426.48 contact
Phe3456.51 contact
Phe3466.52 contact
Val3506.56 contact
Tyr3737.43 contact

direct interaction, water mediated interaction and no interaction
*H-bond only present in one out of the two chains in the PDB

**putative water-mediated H-bond only possible in one out of the two chains in the PDB
amedium (MR) and low (LR) resolution models, see Table 1.

bAmber-based MM/CG simulations and HADDOCK and IFD dockings.
cX-ray structure (PDB code 3PBL)88 and mutagenesis data1,55.
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Table 8: Precision (PREC), recall (REC), and F1 score for the D3R/ETI complex compu-
tational predictions (see Table 7).

MR
MM/CG

LR
MM/CG

MR
HADDOCK

LR
HADDOCK

MR
IFD

LR
IFD

PREC 1.00 1.00 1.00 1.00 0.75 1.00
REC 1.00 0.75 0.75 0.75 0.75 0.50
F1 1.00 0.86 0.86 0.86 0.75 0.67

Low resolution model: hTAS2R16/PGP complex

For bitter taste receptors, experimental structural information is lacking and the best tem-

plates for homology modeling show a sequence identity of only 15 %. Therefore, the only

experimental data available to validate these simulations consists of in vitro functional assays

of receptor mutants48. Based on the experimental data for hTAS2R16, residues Glu863.36,

Asn893.39, Phe933.40, His1815.43, Phe2406.52 and Ile2436.55 are important for ligand binding

in this receptor, whereas Gln1775.39 is not29 (see Table 9).

Here we compared the GROMOS-based MM/CG simulation of the hTAS2R16/PGP

complex carried out by Fierro et al. 29 with Amber-based MM/CG simulations (this work).

Our aim was to assess the performance of the two MM/CG implementations for such low

resolution cases with limited experimental data for validation.

Both Amber- and GROMOS-based MM/CG simulations maintained hydrogen bonds to

Glu863.36 and Asn893.39, as well as a second shell H-bond with His1815.43, but did not iden-

tify interactions with Ile2436.55, consistent with mutagenesis data. However, Amber-based

MM/CG sampled hydrophobic and/or second shell π-stacking interactions with Phe933.40

and Phe2406.52 (two residues experimentally verified as involved in binding), whereas these in-

teractions are only present in one GROMOS-based MM/CG cluster. Furthermore, GROMOS-

based MM/CG predicted a H-bond with Gln1775.39, while Amber-based MM/CG correctly

determined this residue as non-binding (see Figure S15 and Table 9). As a result, Am-

ber MM/CG featured better precision and F1 score and similar recall compared to the
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GROMOS-based MM/CG simulation in reference 29. Nonetheless, both hybrid simulations

showed better statistical values than docking29 (Table 10).

Table 9: Interactions of the most populated clusters for the Amber- (AM) and GROMOS-
based MM/CG (GM) simulations of the hTAS2R16/PGP system compared to mutagenesis
data48. The clusters are numbered consecutively according to their population, indicated as
percentage.
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Glu863.36 H-bond
Asn893.39 H-bond
Phe933.40 hydrophobic/

2nd shell π-stacking
Gln1775.39 H-bond
His1815.43 2nd shell H-bond
Phe2406.52 2nd shell π-stacking
Ile2436.55 unknown

direct interaction, water mediated interaction and no interaction

Table 10: Precision (PREC), recall (REC), and F1 score of the Amber- and GROMOS-
based MM/CG PGP poses in hTAS2R16 (see Table 9). Results for docking taken from
reference 29.

Amber
MM/CG

GROMOS
MM/CG HADDOCK

PREC 1.00 0.83 0.50
REC 0.83 0.83 0.50
F1 0.91 0.83 0.50

Discussion

In this work, we introduced the Amber force field into our existing MM/CG interface, based

on the GROMACS code72,73. The MM part of the code can now be described either with

a united-atom force field (GROMOS96 43A1, PRODRG and SPC/E for the protein, lig-
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and, and water, respectively) or with an all-atom force field (i.e. Amber ff14SB, GAFF and

TIP3P). The MM/CG setup was simplified by replacing the use of an external webserver

(PRODRG20) with a program (ACPYPE35) fully integrated into the ligand parameteriza-

tion workflow. ACPYPE automatically provides small molecule parameters, using GAFF

and AM1-BCC charges, that are consistent with the Amber all-atom protein force field81.

Therefore, simulation of ligand–receptor complexes is possible without the need of a long

manual ligand parameterization procedure.

The predictive power of the Amber MM/CG was tested in four hGPCR/ligand complexes

using models at different resolutions (see Table 1). The Amber-based MM/CG simulations

of hA2AR/CFF (HR) turned out to be in good agreement with AA-MD and X-ray. The

prediction was better than that made with the GROMOS MM/CG. One possible cause may

be the limited compatibility of the PRODRG charges with the GROMOS force field, as al-

ready pointed out by Lemkul et al. 79. In addition, the Amber-based MM/CG simulations of

both hA2AR/CFF (HR) and hTAS2R16/PGP (LR) showed better agreement with mutage-

nesis and functional data than GROMOS-based MM/CG. Therefore, the Amber force field

performed significantly better at describing the receptor–ligand interactions than GROMOS-

based MM/CG.

The Amber MM/CG approach was validated retrospectively by using two additional

hGPCR/ligand complexes, β2-AR/ADR and D3R/ETI, for which a wealth of experimental

data is available (Table 1). The Amber-based MM/CG approach reproduced the ligand

poses observed in the X-ray structures40,88 and the predicted binding residues agree with the

mutagenesis data. The Amber-based MM/CG of β2-AR/ADR (HR) and D3R/ETI (MR)

reproduced well the crystallographic interactions. For the LR models, the Amber-based

MM/CG was still able to predict overall correct binding poses and recover most of the X-ray

receptor–ligand interactions. Comparison with previous AA-MD simulations also showed a

good agreement.

The Amber-based MM/CG simulations for both β2-AR/ADR and D3R/ETI reproduce
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better the X-ray receptor–ligand interactions than docking (especially for the LR models).

They perform better in recovering binding residues predicted by mutagenesis (recall) and

similarly in distinguishing binding from non-binding residues (precision). This is in line with

previous studies suggesting molecular simulations for refining docking poses in homology

models108.

Furthermore, the MM/CG simulations revealed the presence of water mediated hydro-

gen bonds, which were not evident in the X-ray structure (where water molecules were

not resolved) and/or docking poses. For hA2AR/CFF, AA-MD, as well as both MM/CG

simulations (GROMOS- and Amber-based), revealed a water-mediated hydrogen bond with

His2787.43. Retrospective visualization of the X-ray structure shows that such water-mediated

interaction can also be possible in the crystal structure38. In the β2-AR/ADR complex, a

water-mediated hydrogen bond between the catechol group of the ligand and Ser2045.43 can

also be proposed based on the findings in the MM/CG simulations. Interestingly, such in-

teraction might also provide a rationale for the change in Ki observed experimentally upon

mutation of this residue54,109.

Conclusions

We have presented an implementation of the Amber MM/CG scheme, tailored to predict

ligand poses to hGPCRs. The implementation was tested by running more than 13 µs of

Amber-based MM/CG simulations on a variety of complexes at different resolution, based

on X-ray structures, AA-MD simulation snapshots and homology models. The simulations

were validated retrospectively using X-ray structures and all-atom MD simulations, as well as

site-directed mutagenesis data. Comparison with docking poses was also made. The Amber

MM/CG approach turned out to recover the crystallographically observed receptor–ligand

contacts. This is particularly useful for LR models, for which docking alone can miss some

interactions due to the limited accuracy of side chain predictions.
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We expect our approach to be applicable to the prediction of ligand binding poses in other

GPCRs, regardless of the resolution of available structural information (X-ray or cryo-EM

experimental structures, AA-MD simulations, or homology models). Amber-based MM/CG

simulations might reveal themselves as a useful tool for predicting ligand poses in low-

resolution homology models110,111 and low-affinity complexes98,112,113, or to predict water-

mediated ligand contacts. Although AA-MD can also be used for HR or MR models114–117,

the MM/CG approach is less computationally expensive.

The Amber MM/CG approach could also be applied for virtual ligand screening, by

running multiple simulations of the same receptor bound to different ligands simultaneously.

The MM/CG setup involves one order of magnitude less atoms than a fully atomistic system

(see Table 2). As a result, the MM/CG simulation of hA2AR/CFF is approximately one order

of magnitude faster than the corresponding all-atom MD simulation when using two 3 GHz

processors. Besides predicting ligand poses, the Amber MM/CG approach, together with the

recently developed open boundary (OB-)MM/CG for grand canonical simulations118, could

be used to calculate ligand binding free energies. Indeed, the OB-MM/CG improves the

description of the structural and dynamical properties of water118, thus enabling a rigorous

implementation of free energy methods. The MM/CG code is freely available on the Hybrid

MM/CG webserver (https://mmcg.grs.kfa-juelich.de/; see the Download section)119.

Acknowledgement

The authors thank Dr. Vania Calandrini, Dr. Emiliano Ippoliti and Dr. Thomas Tarenzi for

their support regarding the setup of the MM/CG simulations, as well as Dr. Fabrizio Fierro

for providing access to his GROMOS-based MM/CG trajectories of the hTAS2R16/PGP

system and useful discussions. Simulations were performed with computing resources granted

by RWTH Aachen University under project jara0165. Paolo Carloni and Mercedes Alfonso-

Prieto also thank the financial support of the “Ernesto Illy Foundation” (Trieste, Italy).

32



Paolo Carloni received funding from the EBRAINS research infrastructure, funded from the

European Union’s Horizon 2020 294 Framework Programme for Research and Innovation

under the Specific Grant Agreement No. 945539295 (Human Brain Project SGA3).

Associated Content

Supporting Information Available: Further details on the MM/CG scheme, additional anal-

yses and discussions of the hA2AR/CFF complex (protein RMSF, ligand RMSD, position,

flipping angle, protein–ligand hydrogen bonds and contacts, comparison with mutagene-

sis data, and binding pose discussion), the β2-AR/ADR and D3R/ETI complexes (protein

RMSF, ligand RMSD, protein–ligand hydrogen bonds and contacts, comparison with mu-

tagenesis data, and ligand superimpositions with X-ray), and the hTAS2R16/PGP complex

(ligand RMSD, protein–ligand hydrogen bonds and contacts, comparison with mutagenesis

data, and ligand superimpositions).

References

(1) Pándy-Szekeres, G.; Munk, C.; Tsonkov, T. M.; Mordalski, S.; Harpsøe, K.;

Hauser, A. S.; Bojarski, A. J.; Gloriam, D. E. GPCRdb in 2018: adding GPCR

structure models and ligands. Nucleic Acids Res 2017, 46, D440–D446.

(2) Hauser, A. S.; Chavali, S.; Masuho, I.; Jahn, L. J.; Martemyanov, K. A.; Glo-

riam, D. E.; Babu, M. M. Pharmacogenomics of GPCR drug targets. Cell 2018,

172, 41–54.

(3) Hauser, A. S.; Attwood, M. M.; Rask-Andersen, M.; Schiöth, H. B.; Gloriam, D. E.

Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug

Discov 2017, 16, 829.

33



(4) Di Pizio, A.; Behrens, M.; Krautwurst, D. Beyond the flavour: the potential drugga-

bility of chemosensory G Protein-Coupled receptors. Int J Mol Sci 2019, 20, 1402.

(5) Lee, S.-J.; Depoortere, I.; Hatt, H. Therapeutic potential of ectopic olfactory and taste

receptors. Nat Rev Drug Discov 2019, 18, 116–138.

(6) Basith, S.; Cui, M.; Macalino, S. J. Y.; Park, J.; Clavio, N. A. B.; Kang, S.; Choi, S.

Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics

Approaches: Impact on Rational Drug Design. Front Pharmacol 2018, 9, 128.

(7) GPCRdb. http://gpcrdb.org, [Online; accessed January 31st 2020].

(8) Munk, C.; Mutt, E.; Isberg, V.; Nikolajsen, L. F.; Bibbe, J. M.; Flock, T.; Han-

son, M. A.; Stevens, R. C.; Deupi, X.; Gloriam, D. E. An online resource for GPCR

structure determination and analysis. Nat Methods 2019, 16, 151–162.

(9) Kufareva, I.; Katritch, V.; Stevens, R. C.; Abagyan, R. Advances in GPCR modeling

evaluated by the GPCR Dock 2013 assessment: meeting new challenges. Structure

2014, 22, 1120–1139.

(10) Cavasotto, C. N.; Palomba, D. Expanding the horizons of G protein-coupled recep-

tor structure-based ligand discovery and optimization using homology models. Chem-

Comm 2015, 51, 13576–13594.

(11) Esguerra, M.; Siretskiy, A.; Bello, X.; Sallander, J.; Gutiérrez-de Terán, H. GPCR-

ModSim: A comprehensive web based solution for modeling G-protein coupled recep-

tors. Nucleic Acids Res 2016, 44, W455–W462.

(12) Heifetz, A.; James, T.; Morao, I.; Bodkin, M. J.; Biggin, P. C. Guiding lead optimiza-

tion with GPCR structure modeling and molecular dynamics. Curr Opin Pharmacol

2016, 30, 14–21.

34



(13) Fierro, F.; Suku, E.; Alfonso-Prieto, M.; Giorgetti, A.; Cichon, S.; Carloni, P. Agonist

Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis. Front

Mol Biosci 2017, 4, 63.

(14) Lupala, C. S.; Rasaeifar, B.; Gomez-Gutierrez, P.; Perez, J. J. Using molecular dy-

namics for the refinement of atomistic models of GPCRs by homology modeling. J

Biomol Struct Dyn 2018, 36, 2436–2448.

(15) Rodríguez-Espigares, I.; Torrens-Fontanals, M.; Tiemann, J. K.; Aranda-García, D.;

Ramírez-Anguita, J. M.; Stepniewski, T. M.; Worp, N.; Varela-Rial, A.; Morales-

Pastor, A.; Lacruz, B. M.; Pándy-Szekeres, G.; Mayol, E.; Giorgino, T.; Carlsson, J.;

Deupi, X.; Filipek, S.; Filizola, M.; Gómez-Tamayo, J. C.; Gonzalez, A.; Gutierrez-de

Teran, H.; Jimenez, M.; Jespers, W.; Kapla, J.; Khelashvili, G.; Kolb, P.; Latek, D.;

Marti-Solano, M.; Matricon, P.; Matsoukas, M.-T.; Miszta, P.; Olivella, M.; Perez-

Benito, L.; Provasi, D.; Ríos, S.; Rodríguez-Torrecillas, I.; Sallander, J.; Sztyler, A.;

Vaidehi, N.; Vasile, S.; Weinstein, H.; Zachariae, U.; Hildebrand, P. W.; Fabri-

tiis, G. D.; Sanz, F.; Gloriam, D. E.; Cordomí, A.; Guixà-González, R.; Selent, J.

GPCRmd uncovers the dynamics of the 3D-GPCRome. bioRxiv 2019, 839597.

(16) Leguèbe, M.; Nguyen, C.; Capece, L.; Hoang, Z.; Giorgetti, A.; Carloni, P. Hy-

brid Molecular Mechanics/Coarse-Grained Simulations for Structural Prediction of

G-Protein Coupled Receptor/Ligand Complexes. PLOS ONE 2012, 7, e47332.

(17) Schneider, J.; Korshunova, K.; Musiani, F.; Alfonso-Prieto, M.; Giorgetti, A.; Car-

loni, P. Predicting ligand binding poses for low-resolution membrane protein models:

Perspectives from multiscale simulations. Biochem Biophys Res Commun 2018, 498,

366–374.

(18) Alfonso-Prieto, M.; Navarini, L.; Carloni, P. Understanding ligand binding to G-

protein coupled receptors using multiscale simulations. Front Mol Biosci 2019, 6 .

35



(19) GROMACS: Force fields. http://www.gromacs.org/Downloads/User_

contributions/Force_fields, [Online; accessed January 31st 2020].

(20) Schüttelkopf, A. W.; van Aalten, D. M. F. PRODRG: a tool for high-throughput

crystallography of protein-ligand complexes. Acta Crystallogr 2004, D60, 1355–1363.
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