000878448 001__ 878448
000878448 005__ 20210130005621.0
000878448 0247_ $$2doi$$a10.1002/adfm.201910387
000878448 0247_ $$2ISSN$$a1057-9257
000878448 0247_ $$2ISSN$$a1099-0712
000878448 0247_ $$2ISSN$$a1616-301X
000878448 0247_ $$2ISSN$$a1616-3028
000878448 0247_ $$2Handle$$a2128/26616
000878448 0247_ $$2WOS$$aWOS:000513567300001
000878448 037__ $$aFZJ-2020-02856
000878448 082__ $$a530
000878448 1001_ $$0P:(DE-HGF)0$$aJu, Min$$b0
000878448 245__ $$aRedox‐Active Iron‐Citrate Complex Regulated Robust Coating‐Free Hydrogel Microfiber Net with High Environmental Tolerance and Sensitivity
000878448 260__ $$aWeinheim$$bWiley-VCH$$c2020
000878448 3367_ $$2DRIVER$$aarticle
000878448 3367_ $$2DataCite$$aOutput Types/Journal article
000878448 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609249268_12842
000878448 3367_ $$2BibTeX$$aARTICLE
000878448 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878448 3367_ $$00$$2EndNote$$aJournal Article
000878448 520__ $$aStretchable hydrogel microfibers as a novel type of ionic conductors are promising in gaining skin‐like sensing applications in more diverse scenarios. However, it remains a great challenge to fabricate coating‐free but water‐retaining conductive hydrogel microfibers with a good balance of spinnability and mechanical strength. Here the old yet significant redox chemistry of Fe‐citrate complex is employed to solve this issue in the continuous draw‐spinning process of poly(acrylamide‐co‐sodium acrylate) hydrogel microfibers and microfiber nets from a water/glycerol solution. The resultant microfibers are ionically conductive, highly stretchable, and uniform with tunable diameters. Furthermore, the presence of redox‐reversible Fe‐citrate complex and glycerol endows the fibers with good anti‐freezing, water‐retaining, and environmentally intelligent properties. Humidity and UV light can finely mediate the stiffness of hydrogel microfibers; conversely, the ionic conductance of microfibers is also responsive to light, humidity, and strain, which enables the highly sensitive perception of environmental changes. The present draw‐spinning strategy provides more possibilities for coating‐free conductive hydrogel microfibers with a variety of responsive and sensing applications.
000878448 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x0
000878448 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000878448 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000878448 588__ $$aDataset connected to CrossRef
000878448 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000878448 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000878448 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
000878448 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000878448 7001_ $$0P:(DE-Juel1)151161$$aWu, Baohu$$b1$$ufzj
000878448 7001_ $$0P:(DE-HGF)0$$aSun, Shengtong$$b2$$eCorresponding author
000878448 7001_ $$00000-0001-7235-210X$$aWu, Peiyi$$b3$$eCorresponding author
000878448 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201910387$$gVol. 30, no. 14, p. 1910387 -$$n14$$p1910387$$tAdvanced functional materials$$v30$$x1616-3028$$y2020
000878448 8564_ $$uhttps://juser.fz-juelich.de/record/878448/files/Redox%E2%80%90Active%20Iron%E2%80%90Citrate%20Complex%20Regulated%20Robust%20Coating%E2%80%90Free%20Hydrogel%20Microfiber%20Net%20with%20High%20Environmental%20Tolerance%20and%20Sensitivity-2.pdf$$yRestricted
000878448 8564_ $$uhttps://juser.fz-juelich.de/record/878448/files/wu_Redox-Active%20Iron-Citrate%20Complex%20Regulated%20Robust%20Coating-Free%20Hydrogel.pdf$$yPublished on 2020-02-16. Available in OpenAccess from 2021-02-16.
000878448 8564_ $$uhttps://juser.fz-juelich.de/record/878448/files/Redox%E2%80%90Active%20Iron%E2%80%90Citrate%20Complex%20Regulated%20Robust%20Coating%E2%80%90Free%20Hydrogel%20Microfiber%20Net%20with%20High%20Environmental%20Tolerance%20and%20Sensitivity-2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000878448 909CO $$ooai:juser.fz-juelich.de:878448$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000878448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151161$$aForschungszentrum Jülich$$b1$$kFZJ
000878448 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000878448 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000878448 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000878448 9141_ $$y2020
000878448 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2018$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2018$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878448 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878448 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000878448 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878448 920__ $$lyes
000878448 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000878448 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000878448 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000878448 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000878448 980__ $$ajournal
000878448 980__ $$aVDB
000878448 980__ $$aUNRESTRICTED
000878448 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000878448 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000878448 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000878448 980__ $$aI:(DE-588b)4597118-3
000878448 9801_ $$aFullTexts