000878449 001__ 878449
000878449 005__ 20210130005622.0
000878449 0247_ $$2doi$$a10.1002/adfm.201910425
000878449 0247_ $$2ISSN$$a1057-9257
000878449 0247_ $$2ISSN$$a1099-0712
000878449 0247_ $$2ISSN$$a1616-301X
000878449 0247_ $$2ISSN$$a1616-3028
000878449 0247_ $$2Handle$$a2128/26209
000878449 0247_ $$2altmetric$$aaltmetric:77385912
000878449 0247_ $$2WOS$$aWOS:000533998000038
000878449 037__ $$aFZJ-2020-02857
000878449 041__ $$aEnglish
000878449 082__ $$a530
000878449 1001_ $$0P:(DE-HGF)0$$aZhang, Xiaotong$$b0
000878449 245__ $$aHybrid Materials from Ultrahigh‐Inorganic‐Content Mineral Plastic Hydrogels: Arbitrarily Shapeable, Strong, and Tough
000878449 260__ $$aWeinheim$$bWiley-VCH$$c2020
000878449 3367_ $$2DRIVER$$aarticle
000878449 3367_ $$2DataCite$$aOutput Types/Journal article
000878449 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605628602_27112
000878449 3367_ $$2BibTeX$$aARTICLE
000878449 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878449 3367_ $$00$$2EndNote$$aJournal Article
000878449 520__ $$aNatural mineralized structural materials such as nacre and bone possess a unique hierarchical structure comprising both hard and soft phases, which can achieve the perfect balance between mechanical strength and shape controllability. Nevertheless, it remains a great challenge to control the complex and predesigned shapes of artificial organic–inorganic hybrid materials at ambient conditions. Inspired by the plasticity of polymer‐induced liquid precursor phases that can penetrate and solidify in porous organic frameworks for biomineral formation, here a mineral plastic hydrogel is shown with ultrahigh silica content (≈95 wt%) that can be similarly hybridized into a porous delignified wood scaffold, and the resultant composite hydrogels can be manually made into arbitrary shapes. Subsequent air drying well preserves the designed shapes and produces fire‐retardant, ultrastrong, and tough structural organic–inorganic hybrids. The proposed mineral plastic hydrogel strategy opens an easy and eco‐friendly way for fabricating bioinspired structural materials that compromise both precise shape control and high mechanical strength.
000878449 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x0
000878449 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000878449 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000878449 588__ $$aDataset connected to CrossRef
000878449 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000878449 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000878449 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000878449 7001_ $$0P:(DE-Juel1)151161$$aWu, Baohu$$b1$$ufzj
000878449 7001_ $$0P:(DE-HGF)0$$aSun, Shengtong$$b2$$eCorresponding author
000878449 7001_ $$00000-0001-7235-210X$$aWu, Peiyi$$b3$$eCorresponding author
000878449 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201910425$$gVol. 30, no. 19, p. 1910425 -$$n19$$p1910425 -$$tAdvanced functional materials$$v30$$x1616-3028$$y2020
000878449 8564_ $$uhttps://juser.fz-juelich.de/record/878449/files/Hybrid%20Materials%20from%20Ultrahigh%E2%80%90Inorganic%E2%80%90Content%20Mineral%20Plastic%20Hydrogels%20Arbitrarily%20Shapeable%2C%20Strong%2C%20and%20Tough-1.pdf$$yRestricted
000878449 8564_ $$uhttps://juser.fz-juelich.de/record/878449/files/wu_Hybrid%20Materials%20from%20UltrahighInorganicContent%20Mineral%20Plastic%20Hydrogels-Arbitrarily%20Shapeable%20Strong%20and%20Tough%20-Revised.pdf$$yPublished on 2020-03-11. Available in OpenAccess from 2021-03-11.
000878449 8564_ $$uhttps://juser.fz-juelich.de/record/878449/files/Hybrid%20Materials%20from%20Ultrahigh%E2%80%90Inorganic%E2%80%90Content%20Mineral%20Plastic%20Hydrogels%20Arbitrarily%20Shapeable%2C%20Strong%2C%20and%20Tough-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000878449 909CO $$ooai:juser.fz-juelich.de:878449$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000878449 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151161$$aForschungszentrum Jülich$$b1$$kFZJ
000878449 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000878449 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000878449 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000878449 9141_ $$y2020
000878449 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2018$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2018$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878449 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878449 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000878449 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878449 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000878449 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000878449 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000878449 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000878449 980__ $$ajournal
000878449 980__ $$aVDB
000878449 980__ $$aUNRESTRICTED
000878449 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000878449 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000878449 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000878449 980__ $$aI:(DE-588b)4597118-3
000878449 9801_ $$aFullTexts