000878453 001__ 878453
000878453 005__ 20210401192805.0
000878453 0247_ $$2doi$$a10.1021/acs.macromol.0c01256
000878453 0247_ $$2ISSN$$a0024-9297
000878453 0247_ $$2ISSN$$a1520-5835
000878453 0247_ $$2Handle$$a2128/25637
000878453 0247_ $$2WOS$$aWOS:000566339100007
000878453 0247_ $$2altmetric$$aaltmetric:93327045
000878453 037__ $$aFZJ-2020-02859
000878453 041__ $$aEnglish
000878453 082__ $$a540
000878453 1001_ $$0P:(DE-HGF)0$$aKo, Chia-Hsin$$b0
000878453 245__ $$aTemperature-Dependent Phase Behavior of the Thermoresponsive Polymer Poly( N -isopropylmethacrylamide) in an Aqueous Solution
000878453 260__ $$aWashington, DC$$bSoc.$$c2020
000878453 3367_ $$2DRIVER$$aarticle
000878453 3367_ $$2DataCite$$aOutput Types/Journal article
000878453 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617218017_1361
000878453 3367_ $$2BibTeX$$aARTICLE
000878453 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878453 3367_ $$00$$2EndNote$$aJournal Article
000878453 520__ $$aPoly(N-isopropylmethacrylamide) (PNIPMAM) is a thermoresponsive polymer, exhibiting lower critical solution temperature (LCST) behavior in aqueous solution. We investigate the temperature-dependent phase behavior of PNIPMAM solutions in D2O using turbidimetry, differential scanning calorimetry (DSC), small-angle and very small-angle neutron scattering (SANS and VSANS), and Raman spectroscopy, covering a large concentration range and compare the results from PNIPMAM with the findings from its analogue poly(N-isopropylacrylamide) (PNIPAM). We find that the PNIPMAM chains only dehydrate 2-3 °C above the macroscopic cloud point temperature, TCP. Even in the one-phase state, loosely packed, large-scale inhomogeneities and physical crosslinks are observed, and the chain conformation of PNIPMAM is more compact than the one of PNIPAM. This is attributed to the attractive intermolecular interactions between the hydrophobic moieties. The phase transition of PNIPMAM is broader than the one of PNIPAM. Upon heating to the two-phase state, the PNIPMAM chains collapse and form mesoglobules. These are larger and more hydrated than for PNIPAM. This is attributed to the steric hindrance caused by the additional methyl groups, which weaken the intrapolymer interactions in the two-phase state. Thus, the methyl groups in the backbone of the PNIPMAM chains have a significant impact on the hydration and the structural behavior around the phase transition.
000878453 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000878453 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000878453 588__ $$aDataset connected to CrossRef
000878453 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000878453 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000878453 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000878453 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x1
000878453 7001_ $$0P:(DE-HGF)0$$aClaude, Kora-Lee$$b1
000878453 7001_ $$0P:(DE-HGF)0$$aNiebuur, Bart-Jan$$b2
000878453 7001_ $$00000-0003-4086-5984$$aJung, Florian A.$$b3
000878453 7001_ $$0P:(DE-HGF)0$$aKang, Jia-Jhen$$b4
000878453 7001_ $$0P:(DE-HGF)0$$aSchanzenbach, Dirk$$b5
000878453 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b6
000878453 7001_ $$0P:(DE-Juel1)172014$$aBarnsley, Lester C.$$b7
000878453 7001_ $$0P:(DE-Juel1)151161$$aWu, Baohu$$b8$$ufzj
000878453 7001_ $$0P:(DE-Juel1)130893$$aPipich, Vitaliy$$b9
000878453 7001_ $$00000-0003-0824-8572$$aSchulte, Alfons$$b10
000878453 7001_ $$00000-0002-9566-6088$$aMüller-Buschbaum, Peter$$b11
000878453 7001_ $$00000-0003-2443-886X$$aLaschewsky, André$$b12
000878453 7001_ $$00000-0002-7098-3458$$aPapadakis, Christine M.$$b13$$eCorresponding author
000878453 773__ $$0PERI:(DE-600)1491942-4$$a10.1021/acs.macromol.0c01256$$gp. acs.macromol.0c01256$$n16$$p6816–6827$$tMacromolecules$$v53$$x1520-5835$$y2020
000878453 8564_ $$uhttps://juser.fz-juelich.de/record/878453/files/ma-2020-01256z.R1_Proof_hi.pdf$$yPublished on 2020-08-14. Available in OpenAccess from 2021-08-14.
000878453 8564_ $$uhttps://juser.fz-juelich.de/record/878453/files/ma0c01256_si_001.pdf$$yRestricted
000878453 8564_ $$uhttps://juser.fz-juelich.de/record/878453/files/ma-2020-01256z.R1_Proof_hi.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-08-14. Available in OpenAccess from 2021-08-14.
000878453 8564_ $$uhttps://juser.fz-juelich.de/record/878453/files/ma0c01256_si_001.pdf?subformat=pdfa$$xpdfa$$yRestricted
000878453 909CO $$ooai:juser.fz-juelich.de:878453$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000878453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b6$$kFZJ
000878453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151161$$aForschungszentrum Jülich$$b8$$kFZJ
000878453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich$$b9$$kFZJ
000878453 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000878453 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000878453 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000878453 9141_ $$y2020
000878453 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000878453 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000878453 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000878453 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878453 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOLECULES : 2018$$d2020-01-12
000878453 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMACROMOLECULES : 2018$$d2020-01-12
000878453 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-12
000878453 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000878453 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000878453 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000878453 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000878453 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-01-12
000878453 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000878453 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000878453 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-12$$wger
000878453 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000878453 920__ $$lyes
000878453 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000878453 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000878453 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000878453 980__ $$ajournal
000878453 980__ $$aVDB
000878453 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000878453 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000878453 980__ $$aI:(DE-588b)4597118-3
000878453 980__ $$aUNRESTRICTED
000878453 9801_ $$aFullTexts