000878454 001__ 878454
000878454 005__ 20240313103134.0
000878454 0247_ $$2doi$$a10.1371/journal.pcbi.1007790
000878454 0247_ $$2Handle$$a2128/25883
000878454 0247_ $$2altmetric$$aaltmetric:88897044
000878454 0247_ $$2pmid$$apmid:32841234
000878454 0247_ $$2WOS$$aWOS:000565612000002
000878454 037__ $$aFZJ-2020-02860
000878454 082__ $$a610
000878454 1001_ $$0P:(DE-Juel1)156326$$aBachmann, Claudia$$b0$$eCorresponding author$$ufzj
000878454 245__ $$aFiring rate homeostasis counteracts changes in stability of recurrent neural networks caused by synapse loss in Alzheimer’s disease
000878454 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2020
000878454 3367_ $$2DRIVER$$aarticle
000878454 3367_ $$2DataCite$$aOutput Types/Journal article
000878454 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616403767_9180
000878454 3367_ $$2BibTeX$$aARTICLE
000878454 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878454 3367_ $$00$$2EndNote$$aJournal Article
000878454 500__ $$aAdditional grants: Helmholtz Association Initiative and Networking Fund (project no. SO-092 [Advanced Computing Architectures] and Helmholtz Portfolio Theme "Supercomputing and Modeling for the Human Brain"),
000878454 520__ $$aThe impairment of cognitive function in Alzheimer’s disease is clearly correlated to synapse loss. However, the mechanisms underlying this correlation are only poorly understood. Here, we investigate how the loss of excitatory synapses in sparsely connected random networks of spiking excitatory and inhibitory neurons alters their dynamical characteristics. Beyond the effects on the activity statistics, we find that the loss of excitatory synapses on excitatory neurons reduces the network’s sensitivity to small perturbations. This decrease in sensitivity can be considered as an indication of a reduction of computational capacity. A full recovery of the network’s dynamical characteristics and sensitivity can be achieved by firing rate homeostasis, here implemented by an up-scaling of the remaining excitatory-excitatory synapses. Mean-field analysis reveals that the stability of the linearised network dynamics is, in good approximation, uniquely determined by the firing rate, and thereby explains why firing rate homeostasis preserves not only the firing rate but also the network’s sensitivity to small perturbations.
000878454 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000878454 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x1
000878454 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x2
000878454 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3
000878454 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x4
000878454 536__ $$0G:(GEPRIS)233510988$$aDFG project 233510988 - Mathematische Modellierung der Entstehung und Suppression pathologischer Aktivitätszustände in den Basalganglien-Kortex-Schleifen (233510988)$$c233510988$$x5
000878454 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x6
000878454 536__ $$0G:(DE-Juel1)jinm60_20190501$$aFunctional Neural Architectures (jinm60_20190501)$$cjinm60_20190501$$fFunctional Neural Architectures$$x7
000878454 588__ $$aDataset connected to CrossRef
000878454 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b1
000878454 7001_ $$0P:(DE-Juel1)165640$$aDuarte, Renato$$b2
000878454 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b3
000878454 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1007790$$gVol. 16, no. 8, p. e1007790 -$$n8$$pe1007790 -$$tPLoS Computational Biology$$v16$$x1553-734X$$y2020
000878454 8564_ $$uhttps://juser.fz-juelich.de/record/878454/files/journal.pcbi.1007790.pdf$$yOpenAccess
000878454 8564_ $$uhttps://juser.fz-juelich.de/record/878454/files/journal.pcbi.1007790.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878454 8767_ $$d2020-08-17$$eAPC$$jDeposit$$lDeposit: PLoS$$pPCOMPBIOL-D-19-00405$$zUSD 2350,-
000878454 909CO $$ooai:juser.fz-juelich.de:878454$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000878454 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156326$$aForschungszentrum Jülich$$b0$$kFZJ
000878454 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b1$$kFZJ
000878454 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165640$$aForschungszentrum Jülich$$b2$$kFZJ
000878454 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b3$$kFZJ
000878454 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000878454 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x1
000878454 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x2
000878454 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000878454 9141_ $$y2020
000878454 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878454 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2018$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878454 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-05
000878454 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000878454 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000878454 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000878454 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000878454 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000878454 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x4
000878454 9801_ $$aAPC
000878454 9801_ $$aFullTexts
000878454 980__ $$ajournal
000878454 980__ $$aVDB
000878454 980__ $$aI:(DE-Juel1)INM-6-20090406
000878454 980__ $$aI:(DE-Juel1)IAS-6-20130828
000878454 980__ $$aI:(DE-Juel1)INM-10-20170113
000878454 980__ $$aI:(DE-82)080012_20140620
000878454 980__ $$aI:(DE-Juel1)JSC-20090406
000878454 980__ $$aAPC
000878454 980__ $$aUNRESTRICTED
000878454 981__ $$aI:(DE-Juel1)IAS-6-20130828