000878466 001__ 878466
000878466 005__ 20210304134018.0
000878466 0247_ $$2doi$$a10.1002/vzj2.20058
000878466 0247_ $$2Handle$$a2128/25603
000878466 0247_ $$2altmetric$$aaltmetric:88110544
000878466 0247_ $$2WOS$$aWOS:000618773300053
000878466 037__ $$aFZJ-2020-02871
000878466 082__ $$a550
000878466 1001_ $$0P:(DE-Juel1)158034$$aGroh, Jannis$$b0$$eCorresponding author
000878466 245__ $$aCrop growth and soil water fluxes at erosion‐affected arable sites: Using weighing lysimeter data for model intercomparison
000878466 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2020
000878466 3367_ $$2DRIVER$$aarticle
000878466 3367_ $$2DataCite$$aOutput Types/Journal article
000878466 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599584813_31238
000878466 3367_ $$2BibTeX$$aARTICLE
000878466 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878466 3367_ $$00$$2EndNote$$aJournal Article
000878466 520__ $$aAgroecosystem models need to reliably simulate all biophysical processes that control crop growth, particularly the soil water fluxes and nutrient dynamics. As a result of the erosion history, truncated and colluvial soil profiles coexist in arable fields. The erosion‐affected field‐scale soil spatial heterogeneity may limit agroecosystem model predictions. The objective was to identify the variation in the importance of soil properties and soil profile modifications in agroecosystem models for both agronomic and environmental performance. Four lysimeters with different soil types were used that cover the range of soil variability in an erosion‐affected hummocky agricultural landscape. Twelve models were calibrated on crop phenological stages, and model performance was tested against observed grain yield, aboveground biomass, leaf area index, actual evapotranspiration, drainage, and soil water content. Despite considering identical input data, the predictive capability among models was highly diverse. Neither a single crop model nor the multi‐model mean was able to capture the observed differences between the four soil profiles in agronomic and environmental variables. The model's sensitivity to soil‐related parameters was apparently limited and dependent on model structure and parameterization. Information on phenology alone seemed insufficient to calibrate crop models. The results demonstrated model‐specific differences in the impact of soil variability and suggested that soil matters in predictive agroecosystem models. Soil processes need to receive greater attention in field‐scale agroecosystem modeling; high‐precision weighable lysimeters can provide valuable data for improving the description of soil–vegetation–atmosphere process in the tested models.
000878466 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000878466 588__ $$aDataset connected to CrossRef
000878466 7001_ $$00000-0001-7870-0291$$aDiamantopoulos, Efstathios$$b1
000878466 7001_ $$0P:(DE-HGF)0$$aDuan, Xiaohong$$b2
000878466 7001_ $$0P:(DE-HGF)0$$aEwert, Frank$$b3
000878466 7001_ $$0P:(DE-Juel1)129469$$aHerbst, Michael$$b4
000878466 7001_ $$00000-0001-5164-2327$$aHolbak, Maja$$b5
000878466 7001_ $$00000-0002-8070-0175$$aKamali, Bahareh$$b6
000878466 7001_ $$00000-0002-3679-8427$$aKersebaum, Kurt‐Christian$$b7
000878466 7001_ $$0P:(DE-HGF)0$$aKuhnert, Matthias$$b8
000878466 7001_ $$00000-0003-3700-6062$$aLischeid, Gunnar$$b9
000878466 7001_ $$00000-0001-7608-9097$$aNendel, Claas$$b10
000878466 7001_ $$00000-0002-5088-9528$$aPriesack, Eckart$$b11
000878466 7001_ $$00000-0002-6599-0450$$aSteidl, Jörg$$b12
000878466 7001_ $$0P:(DE-HGF)0$$aSommer, Michael$$b13
000878466 7001_ $$0P:(DE-Juel1)129523$$aPütz, Thomas$$b14
000878466 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b15
000878466 7001_ $$0P:(DE-HGF)0$$aWallor, Evelyn$$b16
000878466 7001_ $$00000-0002-3448-5208$$aWeber, Tobias K. D.$$b17
000878466 7001_ $$0P:(DE-HGF)0$$aWegehenkel, Martin$$b18
000878466 7001_ $$0P:(DE-Juel1)129553$$aWeihermüller, Lutz$$b19
000878466 7001_ $$00000-0002-6232-7688$$aGerke, Horst H.$$b20
000878466 773__ $$0PERI:(DE-600)2088189-7$$a10.1002/vzj2.20058$$gVol. 19, no. 1$$n1$$pe20058$$tVadose zone journal$$v19$$x1539-1663$$y2020
000878466 8564_ $$uhttps://juser.fz-juelich.de/record/878466/files/vzj2.20058.pdf$$yOpenAccess
000878466 8564_ $$uhttps://juser.fz-juelich.de/record/878466/files/vzj2.20058.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878466 909CO $$ooai:juser.fz-juelich.de:878466$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000878466 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158034$$aForschungszentrum Jülich$$b0$$kFZJ
000878466 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129469$$aForschungszentrum Jülich$$b4$$kFZJ
000878466 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129523$$aForschungszentrum Jülich$$b14$$kFZJ
000878466 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b15$$kFZJ
000878466 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129553$$aForschungszentrum Jülich$$b19$$kFZJ
000878466 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000878466 9141_ $$y2020
000878466 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000878466 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000878466 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878466 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2018$$d2020-01-16
000878466 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-16
000878466 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-16
000878466 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000878466 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-16
000878466 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000878466 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000878466 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878466 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-16
000878466 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-16
000878466 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-16
000878466 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000878466 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000878466 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000878466 980__ $$ajournal
000878466 980__ $$aVDB
000878466 980__ $$aUNRESTRICTED
000878466 980__ $$aI:(DE-Juel1)IBG-3-20101118
000878466 9801_ $$aFullTexts