001     878467
005     20210130005629.0
024 7 _ |a 10.1038/s41566-020-0601-5
|2 doi
024 7 _ |a 1749-4885
|2 ISSN
024 7 _ |a 1749-4893
|2 ISSN
024 7 _ |a 2128/25606
|2 Handle
024 7 _ |a altmetric:77776432
|2 altmetric
024 7 _ |a WOS:000519841800004
|2 WOS
037 _ _ |a FZJ-2020-02872
082 _ _ |a 530
100 1 _ |a Elbaz, Anas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys
260 _ _ |a London [u.a.]
|c 2020
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599628582_19886
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Strained GeSn alloys are promising for realizing light emitters based entirely on group IV elements. Here, we report GeSn microdisk lasers encapsulated with a SiNx stressor layer to produce tensile strain. A 300 nm-thick GeSn layer with 5.4 at% Sn, which is an indirect-bandgap semiconductor as-grown, is transformed via tensile strain engineering into a direct-bandgap semiconductor that supports lasing. In this approach, the low Sn concentration enables improved defect engineering and the tensile strain delivers a low density of states at the valence band edge, which is the light hole band. We observe ultra-low-threshold continuous-wave and pulsed lasing at temperatures up to 70 K and 100 K, respectively. Lasers operating at a wavelength of 2.5 μm have thresholds of 0.8 kW cm−2 for nanosecond pulsed optical excitation and 1.1 kW cm−2 under continuous-wave optical excitation. The results offer a path towards monolithically integrated group IV laser sources on a Si photonics platform.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Buca, Dan
|0 P:(DE-Juel1)125569
|b 1
|e Corresponding author
700 1 _ |a von den Driesch, Nils
|0 P:(DE-Juel1)161247
|b 2
700 1 _ |a Pantzas, Konstantinos
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Patriarche, Gilles
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zerounian, Nicolas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Herth, Etienne
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Checoury, Xavier
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Sauvage, Sébastien
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Sagnes, Isabelle
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Foti, Antonino
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Ossikovski, Razvigor
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Hartmann, Jean-Michel
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Boeuf, Frédéric
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Ikonic, Zoran
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Boucaud, Philippe
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 16
700 1 _ |a El Kurdi, Moustafa
|0 P:(DE-HGF)0
|b 17
|e Corresponding author
773 _ _ |a 10.1038/s41566-020-0601-5
|g Vol. 14, no. 6, p. 375 - 382
|0 PERI:(DE-600)2264673-5
|n 6
|p 375
|t Nature photonics
|v 14
|y 2020
|x 1749-4885
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/878467/files/2001.04927.pdf
856 4 _ |u https://juser.fz-juelich.de/record/878467/files/s41566-020-0601-5.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/878467/files/2001.04927.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/878467/files/s41566-020-0601-5.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878467
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)125588
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-14
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT PHOTONICS : 2018
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-14
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT PHOTONICS : 2018
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-14
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
920 1 _ |0 I:(DE-Juel1)VDB881
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-Juel1)VDB881
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21